Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 45(1): 4-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37408527

RESUMO

The biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna. Here we exposed Arabidopsis thaliana plants to 30,000 pulses (237 kV m-1 , 280 ps rise-time, duration of 500 ps) emitted through a Koshelev antenna and monitored the consequences of electromagnetic fields exposure on the expression levels of several key genes involved in calcium metabolism, signal transduction, ROS, and energy status. We found that this treatment was mostly unable to trigger significant changes in the messenger RNA accumulation of calmodulin, Zinc-Finger protein ZAT12, NADPH oxidase/respiratory burst oxidase homolog (RBOH) isoforms D and F, Catalase (CAT2), glutamate-cystein ligase (GSH1), glutathione synthetase (GSH2), Sucrose non-fermenting-related Kinase 1 (SnRK1) and Target of rapamycin (TOR). In contrast, Ascorbate peroxidases APX-1 and APX-6 were significantly induced 3 h after the exposure. These results suggest that this treatment, although quite strong in amplitude, is mostly ineffective in inducing biological effects at the transcriptional level when delivered by an antenna. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Campos Eletromagnéticos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia
2.
Bioelectromagnetics ; 45(5): 218-225, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38533693

RESUMO

Mounting literature indicates that electromagnetic pulses (EMP) is the promising modality to treat cancers with advantages such as noninvasiveness and few side-effects, but its appropriate parameters and underlying mechanisms such as its influence on tumor-derived exosomes (TDEs) are largely unknown. This study aimed to elucidate effects of EMP, exosome inhibition and their coaction on A549 lung adenocarcinoma cells. A549 cells were randomly divided into control group, GW4869 group treated by 20 µM GW4869, vehicle group treated by dimethyl sulfoxide, EMP group treated by EMP exposure, and EMPG group treated by EMP exposure combined with 20 µM GW4869. After EMP exposure, cell proliferation was determined by CCK8 assay, cell cycle and apoptosis was detected by flow cytometry, and cell migration was determined by transwell assay. The results showed that EMP or exosomes inhibition did not affect cell proliferation, cell cycle, apoptosis and cell migration (p > 0.05), but cell migration in EMPG group was significantly decreased compared with vehicle group (p < 0.05). We concluded that under the experimental condition, EMP or GW4869 alone had no effects on behaviors of A549 cells, but their coaction could effectively inhibit the migration of A549 cells.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Exossomos , Humanos , Exossomos/metabolismo , Células A549 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/farmacologia , Compostos de Anilina/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia
3.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200022, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33280560

RESUMO

When high-energy and high-power lasers interact with matter, a significant part of the incoming laser energy is transformed into transient electromagnetic pulses (EMPs) in the range of radiofrequencies and microwaves. These fields can reach high intensities and can potentially represent a significative danger for the electronic devices placed near the interaction point. Thus, the comprehension of the origin of these electromagnetic fields and of their distribution is of primary importance for the safe operation of high-power and high-energy laser facilities, but also for the possible use of these high fields in several promising applications. A recognized main source of EMPs is the target positive charging caused by the fast-electron emission due to laser-plasma interactions. The fast charging induces high neutralization currents from the conductive walls of the vacuum chamber through the target holder. However, other mechanisms related to the laser-target interaction are also capable of generating intense electromagnetic fields. Several possible sources of EMPs are discussed here and compared for high-energy and high-intensity laser-matter interactions, typical for inertial confinement fusion and laser-plasma acceleration. The possible effects on the electromagnetic field distribution within the experimental chamber, due to particle beams and plasma emitted from the target, are also described. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

4.
Electromagn Biol Med ; 37(3): 146-154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902088

RESUMO

Qualitative analysis of the influence of a certain exposure parameter is commonly performed in bioelectromagnetic studies. However, since the exposure condition requires the control of multiple parameters, the diverse results caused by different combinations of these parameters requires further quantitative study of the multivariable (exposure parameters)-bioeffect relation to identify the rule describing bioelectromagnetic effects. The present work investigated the relation between cell viability and the three main exposure parameters (electric intensity (Es), pulse duration (τ) and pulse number (N)) of 9.33 GHz radiofrequency electromagnetic field (RF-EMP). Experiments showed that the inhibitory rate of cell viability (ρ) had a proportional relationship with Es and exponential relationship with N; the equation [Formula: see text] is proposed to quantitatively describe the relation between the cell viability and these three exposure parameters. This equation can be used to predict the significance of a 9.33 GHz RF-EMP-induced bioeffect under the conditions Es <106 kV/m, N < 100, and 300 < τ < 750 ns, under which nonthermal bioeffects dominate for 9.33GHz RF-EMP exposure.


Assuntos
Sobrevivência Celular/efeitos da radiação , Campos Eletromagnéticos , Ondas de Rádio , Animais , Hepatócitos/citologia , Hepatócitos/efeitos da radiação , Análise Multivariada , Ratos , Fatores de Tempo
5.
Front Public Health ; 9: 725310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490200

RESUMO

In this paper, human exposures to ultra-wideband (UWB) electromagnetic (EM) pulses in the microwave region are assessed using a frequency-dependent FDTD scheme previously proposed by the authors. Complex permittivity functions of all biological tissues used in the numerical analyses are accurately expressed by the four-term Cole-Cole model. In our method, we apply the fast inverse Laplace transform to determine the time-domain impulse response, utilize the Prony method to find the Z-domain representation, and extract residues and poles for use in the FDTD formulation. Update equations for the electric field are then derived via the Z-transformation. Firstly, we perform reflection and transmission analyses of a multilayer composed of six different biological tissues and then confirm the validity of the proposed method by comparison with analytical results. Finally, numerical dosimetry of various human bodies exposed to EM pulses from the front in the microwave frequency range is performed, and the specific energy absorption is evaluated and compared with that prescribed in international guidelines.


Assuntos
Corpo Humano , Micro-Ondas , Fenômenos Eletromagnéticos , Humanos , Modelos Biológicos , Radiometria
6.
Materials (Basel) ; 11(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874841

RESUMO

The use of various external influences to influence metal melts (vibration, ultrasound, etc.) is a known method of changing the structure and properties of metals and alloys. In the overwhelming majority, all methods of external action on melts cause grinding of the metal structure, which leads to an increase in strength characteristics. The paper considers a new method of external physical action on molten metal, namely, electromagnetic pulses. Work on the investigation of the impulse effect on metal melts is conducted in two laboratories: in Chelyabinsk (the laboratory of Professor Krymsky V.V.) and in Khabarovsk (in the laboratory of Ri Josen). If at the beginning only small masses of metal were processed in the laboratory, now the work is at the industrial level. Masses of processed metal reach 2 tons. The article summarizes and structures the results of the conducted studies on the effect on nonferrous metal melts with powerful electromagnetic pulses. General regularities of such influence on the structure and properties of the metal are established. The results of such effects on pure metals (aluminum, zinc) and on aluminum alloys are provided. It is established that impulse processing contributes to a decrease in the porosity of castings, an increase in metal density, and a decrease in electrical resistivity. Also, in pulsed processing, a grinding of the metal grains occurs, an increase in the solubility of the main components in the alpha phase, and changes for the eutectic in the structure. An interesting fact is the simultaneous increase in the properties of the strength and plasticity of the metal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA