Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
Annu Rev Biochem ; 90: 431-450, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153215

RESUMO

The bedrock of drug discovery and a key tool for understanding cellular function and drug mechanisms of action is the structure determination of chemical compounds, peptides, and proteins. The development of new structure characterization tools, particularly those that fill critical gaps in existing methods, presents important steps forward for structural biology and drug discovery. The emergence of microcrystal electron diffraction (MicroED) expands the application of cryo-electron microscopy to include samples ranging from small molecules and membrane proteins to even large protein complexes using crystals that are one-billionth the size of those required for X-ray crystallography. This review outlines the conception, achievements, and exciting future trajectories for MicroED, an important addition to the existing biophysical toolkit.


Assuntos
Microscopia Crioeletrônica/métodos , Descoberta de Drogas/métodos , Nanopartículas/química , Proteínas/química , Microscopia Crioeletrônica/instrumentação , Cristalização , Elétrons , Microscopia Eletrônica de Transmissão/instrumentação , Microscopia Eletrônica de Transmissão/métodos , Fluxo de Trabalho
2.
Proc Natl Acad Sci U S A ; 121(26): e2316438121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900799

RESUMO

Phase transitions occurring in nonequilibrium conditions can evolve through high-energy intermediate states inaccessible via equilibrium adiabatic conditions. Because of the subtle nature of such hidden phases, their direct observation is extremely challenging and requires simultaneous visualization of matter at subpicoseconds and subpicometer scales. Here, we show that a magnetite crystal in the vicinity of its metal-to-insulator transition evolves through different hidden states when controlled via energy-tuned ultrashort laser pulses. By directly monitoring magnetite's crystal structure with ultrafast electron diffraction, we found that upon near-infrared (800 nm) excitation, the trimeron charge/orbital ordering pattern is destroyed in favor of a phase-separated state made of cubic-metallic and monoclinic-insulating regions. On the contrary, visible light (400 nm) activates a photodoping charge transfer process that further promotes the long-range order of the trimerons by stabilizing the charge density wave fluctuations, leading to the reinforcement of the monoclinic insulating phase. Our results demonstrate that magnetite's structure can evolve through completely different metastable hidden phases that can be reached long after the initial excitation has relaxed, breaking ground for a protocol to control emergent properties of matter.

3.
Proc Natl Acad Sci U S A ; 120(46): e2309240120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37943836

RESUMO

A bottleneck in high-throughput nanomaterials discovery is the pace at which new materials can be structurally characterized. Although current machine learning (ML) methods show promise for the automated processing of electron diffraction patterns (DPs), they fail in high-throughput experiments where DPs are collected from crystals with random orientations. Inspired by the human decision-making process, a framework for automated crystal system classification from DPs with arbitrary orientations was developed. A convolutional neural network was trained using evidential deep learning, and the predictive uncertainties were quantified and leveraged to fuse multiview predictions. Using vector map representations of DPs, the framework achieves a testing accuracy of 0.94 in the examples considered, is robust to noise, and retains remarkable accuracy using experimental data. This work highlights the ability of ML to be used to accelerate experimental high-throughput materials data analytics.

4.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074922

RESUMO

Under the irradiation of an ultrafast intense laser, solid materials can be driven into nonequilibrium states undergoing an ultrafast solid-liquid phase transition. Understanding such nonequilibrium states is essential for scientific research and industrial applications because they exist in various processes including laser fusion and laser machining yet challenging in the sense that high resolution and single-shot capability are required for the measurements. Herein, an ultrafast diffraction technique with megaelectron-volt (MeV) electrons is used to resolve the atomic pathway over the entire laser-induced ultrafast melting process, from the initial loss of long-range order and the formation of high-density liquid to the progressive evolution of short-range order and relaxation into the metastable low-density liquid state. High-resolution measurements using electron pulse compression and a time-stamping technique reveal a coherent breathing motion of polyhedral clusters in transient liquid aluminum during the ultrafast melting process, as indicated by the oscillation of the interatomic distance between the center atom and atoms in the nearest-neighbor shell. Furthermore, contraction of interatomic distance was observed in a superheated liquid state with temperatures up to 6,000 K. The results provide an atomic view of melting accompanied with internal pressure relaxation and are critical for understanding the structures and properties of matter under extreme conditions.

5.
Proc Natl Acad Sci U S A ; 119(15): e2122793119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385356

RESUMO

Crystallography is the standard for determining the atomic structure of molecules. Unfortunately, many interesting molecules, including an extensive array of biological macromolecules, do not form crystals. While ultrashort and intense X-ray pulses from free-electron lasers are promising for imaging single isolated molecules with the so-called "diffraction before destruction" technique, nanocrystals are still needed for producing sufficient scattering signal for structure retrieval as implemented in serial femtosecond crystallography. Here, we show that a femtosecond laser pulse train may be used to align an ensemble of isolated molecules to a high level transiently, such that the diffraction pattern from the highly aligned molecules resembles that of a single molecule, allowing one to retrieve its atomic structure with a coherent diffraction imaging technique. In our experiment with CO2 molecules, a high degree of alignment is maintained for about 100 fs, and a precisely timed ultrashort relativistic electron beam from a table-top instrument is used to record the diffraction pattern within that duration. The diffraction pattern is further used to reconstruct the distribution of CO2 molecules with atomic resolution. Our results mark a significant step toward imaging noncrystallized molecules with atomic resolution and open opportunities in the study and control of dynamics in the molecular frame that provide information inaccessible with randomly oriented molecules.

6.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717626

RESUMO

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

7.
Nano Lett ; 24(8): 2537-2543, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372692

RESUMO

Characterizing the microstructure of radiation- and chemical-sensitive lithium dendrites and its solid electrolyte interphase (SEI) is an important task when investigating the performance and reliability of lithium-ion batteries. Widely used methods, such as cryogenic high-resolution transmission electron microscopy as well as related spectroscopy, are able to reveal the local structure at nanometer and atomic scale; however, these methods are unable to show the distribution of various crystal phases along the dendrite in a large field of view. In this work, two types of four-dimensional electron microscopy diffractive imaging methods, i.e., scanning electron nanodiffraction (SEND) and scanning convergent beam electron diffraction (SCBED), are employed to show a new pathway on characterizing the sensitive lithium dendrite samples at room temperature and in a large field of view. Combining with the non-negative matrix factorization (NMF) algorithm, orientations of different lithium metal grains along the lithium dendrite as well as different lithium compounds in the SEI layer are clearly identified.

8.
Nano Lett ; 24(10): 2998-3004, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319977

RESUMO

Transition metal oxide dielectric layers have emerged as promising candidates for various relevant applications, such as supercapacitors or memory applications. However, the performance and reliability of these devices can critically depend on their microstructure, which can be strongly influenced by thermal processing and substrate-induced strain. To gain a more in-depth understanding of the microstructural changes, we conducted in situ transmission electron microscopy (TEM) studies of amorphous HfO2 dielectric layers grown on highly textured (111) substrates. Our results indicate that the minimum required phase transition temperature is 180 °C and that the developed crystallinity is affected by texture transfer. Using in situ TEM and 4D-STEM can provide valuable insights into the fundamental mechanisms underlying the microstructural evolution of dielectric layers and could pave the way for the development of more reliable and efficient devices for future applications.

9.
Small ; : e2404777, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140194

RESUMO

Ferroelectric materials exhibit switchable spontaneous polarization below Curie's temperature, driven by octahedral distortions and rotations, as well as ionic displacements. The ability to manipulate polarization coupled with persistent remanence, drives diverse applications, including piezoelectric devices. In the last two decades, nanoscale exploration has unveiled unique material properties influenced by morphology, including the capability to manipulate polarization, patterns, and domains. This paper focuses on the characterization of nanometric sodium niobate (SN) synthesized from metallic niobium through alkali hydrothermal treatment, utilizing electron microscopy techniques, including high-resolution differential phase contrast (DPC) in scanning transmission electron microscopy (STEM). The material exhibits a nanoribbon structure forming a tree root-like network. The study identifies crystallographic phase, atomic columns displacement directions, and surface features, such as exposed planes and the absence of particular atomic columns. The high sensitivity of integrated DPC images proves crucial in overcoming observational challenges in other STEM modes. These observations are essential for potential applications in electronic, photocatalytic, and chemical reaction contexts.

10.
Small ; 20(6): e2306175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771173

RESUMO

A mechanistic understanding of the principles governing the hierarchical organization of supramolecular polymers offers a paradigm for tailoring synthetic molecular architectures at the nano to micrometric scales. Herein, the unconventional crystal growth mechanism of a supramolecular polymer of superbenzene(coronene)-diphenylalanine conjugate (Cr-FFOEt ) is demonstrated. 3D electron diffraction (3D ED), a technique underexplored in supramolecular chemistry, is effectively utilized to gain a molecular-level understanding of the gradual growth of the initially formed poorly crystalline hairy, fibril-like supramolecular polymers into the ribbon-like crystallites. The further evolution of these nanosized flat ribbons into microcrystals by oriented attachment and lateral fusion is probed by time-resolved microscopy and electron diffraction. The gradual morphological and structural changes reveal the nonclassical crystal growth pathway, where the balance of strong and weak intermolecular interactions led to a structure beyond the nanoscale. The role of distinct π-stacking and H-bonding interactions that drive the nonclassical crystallization process of Cr-FFOEt supramolecular polymers is analyzed in comparison to analogous molecules, Py-FFOEt and Cr-FF forming helical and twisted fibers, respectively. Furthermore, the Cr-FFOEt crystals formed through nonclassical crystallization are found to improve the functional properties.

11.
J Synchrotron Radiat ; 31(Pt 4): 723-732, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843005

RESUMO

In a photoinjector electron source, the initial transverse electron bunch properties are determined by the spatial properties of the laser beam on the photocathode. Spatial shaping of the laser is commonly achieved by relay imaging an illuminated circular mask onto the photocathode. However, the Gibbs phenomenon shows that recreating the sharp edge and discontinuity of the cut profile at the mask on the cathode is not possible with an optical relay of finite aperture. Furthermore, the practical injection of the laser into the photoinjector results in the beam passing through small or asymmetrically positioned apertures. This work uses wavefront propagation to show how the transport apertures cause ripple structures to appear in the transverse laser profile even when effectively the full laser power is transmitted. The impact of these structures on the propagated electron bunch has also been studied with electron bunches of high and low charge density. With high charge density, the ripples in the initial charge distribution rapidly wash-out through space charge effects. However, for bunches with low charge density, the ripples can persist through the bunch transport. Although statistical properties of the electron bunch in the cases studied are not greatly affected, there is the potential for the distorted electron bunch to negatively impact machine performance. Therefore, these effects should be considered in the design phase of accelerators using photoinjectors.

12.
Chemistry ; 30(1): e202302619, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37788976

RESUMO

The current work focuses on the investigation of two functionalized naphthyridine derivatives, namely ODIN-EtPh and ODIN-But, to gain insights into the hydrogen bond-assisted H-aggregate formation and its impact on the optical properties of ODIN molecules. By employing a combination of X-ray and electron crystallography, absorption and emission spectroscopy, time resolved fluorescence and ultrafast pump-probe spectroscopy (visible and infrared) we unravel the correlation between the structure and light-matter response, with a particular emphasis on the influence of the polarity of the surrounding environment. Our experimental results and simulations confirm that in polar and good hydrogen-bond acceptor solvents (DMSO), the formation of dimers for ODIN derivatives is strongly inhibited. The presence of a phenyl group linked to the ureidic unit favors the folding of ODIN derivatives (forming an intramolecular hydrogen bond) leading to the stabilization of a charge-transfer excited state which almost completely quenches its fluorescence emission. In solvents with a poor aptitude for forming hydrogen bonds, the formation of dimers is favored and gives rise to H aggregates, with a consequent considerable reduction in the fluorescence emission. The urea-bound phenyl group furtherly stabilizes the dimers in chloroform.

13.
Chemistry ; 30(46): e202401575, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856096

RESUMO

The geometric and electronic structure of [Hg(o-C6F4)]3 (1) in the gas phase, i. e. free of intermolecular interactions, was determined by a synchronous gas-phase electron diffraction/mass spectrometry experiment (GED/MS), complemented by quantum chemical calculations. 1 is stable up to 498 K and the gas phase contains a single molecular form: the trimer [Hg(o-C6F4)]3. It has a planar structure of D3h symmetry with a Hg-C distance of 2.075(5) Šand a Hg-Hg distance of 3.614(7) Š(both rh1). Structural differences between the crystalline and gaseous state have been analyzed. Different DFT functional-basis combinations were tested, demonstrating the importance to consider the relativistic effects of the mercury atoms. The combination PBE0/MWB(Hg),cc-pVTZ(C,F) turned out to be the most appropriate for the geometry optimization of such organomercurials. The electronic structure of 1, the nature of the chemical bonding in C-Hg-C fragments and the nature of the Hg⋅⋅⋅Hg interactions have been analyzed in terms of the Natural Bond Orbital (NBO) and Quantum Theory of Atoms in Molecules (QTAIM) approaches. The influence of the nature of halogen substitution on the structure of the molecules in the series [Hg(o-C6H4)]3, [Hg(o-C6F4)]3, [Hg(o-C6Cl4)]3, [Hg(o-C6Br4)]3 was also analyzed.

14.
J Microsc ; 295(2): 131-139, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38353362

RESUMO

An approach for the crystallographic mapping of two-phase alloys on the nanoscale using a combination of scanned precession electron diffraction and open-source python libraries is introduced in this paper. This method is demonstrated using the example of a two-phase α/ß titanium alloy. The data were recorded using a direct electron detector to collect the patterns, and recently developed algorithms to perform automated indexing and analyse the crystallography from the results. Very high-quality mapping is achieved at a 3 nm step size. The results show the expected Burgers orientation relationships between the α laths and ß matrix, as well as the expected misorientations between α laths. A minor issue was found that one area was affected by 180° ambiguities in indexing occur due to this area being aligned too close to a zone axis of the α with twofold projection symmetry (not present in 3D) in the zero-order Laue Zone, and this should be avoided in data acquisition in the future. Nevertheless, this study demonstrates a good workflow for the analysis of nanocrystalline two- or multi-phase materials, which will be of widespread use in analysing two-phase titanium and other systems and how they evolve as a function of thermomechanical treatments.

15.
J Microsc ; 295(3): 217-235, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38818951

RESUMO

The concept of electronic orbitals has enabled the understanding of a wide range of physical and chemical properties of solids through the definition of, for example, chemical bonding between atoms. In the transmission electron microscope, which is one of the most used and powerful analytical tools for high-spatial-resolution analysis of solids, the accessible quantity is the local distribution of electronic states. However, the interpretation of electronic state maps at atomic resolution in terms of electronic orbitals is far from obvious, not always possible, and often remains a major hurdle preventing a better understanding of the properties of the system of interest. In this review, the current state of the art of the experimental aspects for electronic state mapping and its interpretation as electronic orbitals is presented, considering approaches that rely on elastic and inelastic scattering, in real and reciprocal spaces. This work goes beyond resolving spectral variations between adjacent atomic columns, as it aims at providing deeper information about, for example, the spatial or momentum distributions of the states involved. The advantages and disadvantages of existing experimental approaches are discussed, while the challenges to overcome and future perspectives are explored in an effort to establish the current state of knowledge in this field. The aims of this review are also to foster the interest of the scientific community and to trigger a global effort to further enhance the current analytical capabilities of transmission electron microscopy for chemical bonding and electronic structure analysis.

16.
Adv Exp Med Biol ; 3234: 125-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507204

RESUMO

X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.


Assuntos
Biologia Molecular , Proteínas , Cristalografia por Raios X , Microscopia Crioeletrônica/métodos , Proteínas/química , Substâncias Macromoleculares/química
17.
Chem Pharm Bull (Tokyo) ; 72(5): 471-474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38749738

RESUMO

The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.


Assuntos
Ranitidina , Ranitidina/química , Cristalização , Estrutura Molecular , Elétrons
18.
Nano Lett ; 23(6): 2287-2294, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36898060

RESUMO

Strong coupling between light and mechanical strain forms the foundation for next-generation optical micro- and nano-electromechanical systems. Such optomechanical responses in two-dimensional materials present novel types of functionalities arising from the weak van der Waals bond between atomic layers. Here, by using structure-sensitive megaelectronvolt ultrafast electron diffraction, we report the experimental observation of optically driven ultrafast in-plane strain in the layered group IV monochalcogenide germanium sulfide (GeS). Surprisingly, the photoinduced structural deformation exhibits strain amplitudes of order 0.1% with a 10 ps fast response time and a significant in-plane anisotropy between zigzag and armchair crystallographic directions. Rather than arising due to heating, experimental and theoretical investigations suggest deformation potentials caused by electronic density redistribution and converse piezoelectric effects generated by photoinduced electric fields are the dominant contributors to the observed dynamic anisotropic strains. Our observations define new avenues for ultrafast optomechanical control and strain engineering within functional devices.

19.
Nano Lett ; 23(23): 10772-10778, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988604

RESUMO

Freestanding films provide a versatile platform for materials engineering thanks to additional structural motifs not found in films with a substrate. A ubiquitous example is wrinkles, yet little is known about how they can develop over as fast as a few picoseconds due to a lack of experimental probes to visualize their dynamics in real time on the nanoscopic scale. Here, we use time-resolved electron diffraction to directly observe light-activated wrinkling formation in freestanding La2/3Ca1/3MnO3 films. Via a "lock-in" analysis of oscillations in the diffraction peak position, intensity, and width, we quantitatively reconstructed how wrinkles develop on the time scale of lattice vibration. Contrary to the common assumption of fixed boundary conditions, we found that wrinkle development is associated with ultrafast delamination at the film boundaries. Our work provides a generic protocol to quantify wrinkling dynamics in freestanding films and highlights the importance of the film-substrate interaction in determining the properties of freestanding structures.

20.
Nano Lett ; 23(7): 3054-3061, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36930591

RESUMO

As the electron mobility of two-dimensional (2D) materials is dependent on an insulating substrate, the nonuniform surface charge and morphology of silicon dioxide (SiO2) layers degrade the electron mobility of 2D materials. Here, we demonstrate that an atomically thin single-crystal insulating layer of silicon oxynitride (SiON) can be grown epitaxially on a SiC wafer at a wafer scale and find that the electron mobility of graphene field-effect transistors on the SiON layer is 1.5 times higher than that of graphene field-effect transistors on typical SiO2 films. Microscale and nanoscale void defects caused by heterostructure growth were eliminated for the wafer-scale growth of the single-crystal SiON layer. The single-crystal SiON layer can be grown on a SiC wafer with a single thermal process. This simple fabrication process, compatible with commercial semiconductor fabrication processes, makes the layer an excellent replacement for the SiO2/Si wafer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA