Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(47): e202401812, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38887976

RESUMO

Diketopyrrolopyrrole (DPP)-based polymer semiconductors have drawn great attention in the field of organic electronics due to the planar structure, decent solubilizing capability, and high crystallinity. However, the electron-deficient capacity of DPP derivatives are not strong enough, leading to relatively high-lying lowest unoccupied molecular orbital (LUMO) energy levels of the corresponding polymers. As a result, n-type and ambipolar DPP-based polymers are rare and their electron mobilities also lag far behind the p-type counterparts, which limits the development of important p-n-junction-based electronic devices. Therefore, new design strategies have been proposed recent years to develop n-type/ambipolar DPP-based polymers with improved performances. In this view, these molecular design strategies are summarized, including copolymerization of DPP with different acceptors and weak donors, DPP flanked aromatic ring modification, DPP-core ring expansion and DPP dimerization. The relationship between the chemical structures and organic thin-film transistor performances is intensively discussed. Finally, a perspective on future trends in the molecular design of DPP-based n-type/ambipolar polymers is also proposed.

2.
Nano Lett ; 23(3): 1061-1067, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36662173

RESUMO

Thin films of ZnO nanocrystals are actively pursued as electron-transporting layers (ETLs) in quantum-dot light-emitting diodes (QLEDs). However, the developments of ZnO-based ETLs are highly engineering oriented and the design of ZnO-based ETLs remains empirical. Here, we identified a previously overlooked efficiency-loss channel associated with the ZnO-based ETLs: i.e., interfacial exciton quenching induced by surface-bound ethanol. Accordingly, we developed a general surface-treatment procedure to replace the redox-active surface-bound ethanol with electrochemically inert alkali carboxylates. Characterization results show that the surface treatment procedure does not change other key properties of the ETLs, such as the conductance and work function. Our single-variable experimental design unambiguously demonstrates that improving the electrochemical stabilities of the ZnO ETLs leads to QLEDs with a higher efficiency and longer operational lifetime. Our work provides a crucial guideline to design ZnO-based ETLs for optoelectronic devices.

3.
Angew Chem Int Ed Engl ; : e202412819, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259617

RESUMO

The electron transporting layer (ETL) used in high performance inverted perovskite solar cells (PSCs) is typically composed of C60, which requires time-consuming and costly thermal evaporation deposition, posing a significant challenge for large-scale production. To address this challenge, herein, we present a novel design of solution-processible electron transporting material (ETM) by grafting a non-fullerene acceptor fragment onto C60. The synthesized BTPC60 exhibits an exceptional solution processability and well-organized molecular stacking pattern, enabling the formation of uniform and structurally ordered film with high electron mobility. When applied as ETL in inverted PSCs, BTPC60 not only exhibits excellent interfacial contact with the perovskite layer, resulting in enhanced electron extraction and transfer efficiency, but also effectively passivates the interfacial defects to suppress non-radiative recombination. Resultant BTPC60-based inverted PSCs deliver an impressive power conversion efficiency (PCE) of 25.3% and retain almost 90% of the initial values after aging at 85°C for 1500 hours in N2. More encouragingly, the solution-processed BTPC60 ETL demonstrates remarkable film thickness tolerance, and enables a high PCE up to 24.8% with the ETL thickness of 200 nm. Our results highlight BTPC60 as a promising solution-processed fullerene-based ETM, opening an avenue for improving the scalability of efficient and stable inverted PSCs.

4.
Angew Chem Int Ed Engl ; : e202409609, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976376

RESUMO

Antimony selenosulfide (Sb2(S,Se)3), featuring large absorption coefficient, excellent crystal structure stability, benign non-toxic characteristic, outstanding humidity and ultraviolet tolerability, has recently attracted enormous attention and research interest regarding its photoelectric conversion properties. However, the open-circuit voltage (Voc) for Sb2(S,Se)3-based photovoltaic devices is relatively low, especially for the device with a high power conversion efficiency (η). Herein, an innovative Se-elemental concentration gradient regulation strategy has been exploited to produce high-quality Sb2(S,Se)3 films on TiO2/CdS substrates through a thioacetamide(TA)-synergistic dual-sulfur source hydrothermal-processed method. The Se-elemental gradient distribution produces a favorable energy band structure, which suppresses the energy level barriers for hole transport and enhances the driving force for electron transport in Sb2(S,Se)3 film. This facilitates efficient charge transport/separation of photogenerated carriers and boosts significantly the Voc of Sb2(S,Se)3 photovoltaic devices. The champion TA-Sb2(S,Se)3 planar heterojunction (PHJ) solar cell displays an considerable η of 9.28 % accompanied by an exciting Voc rising to 0.70 V that is currently the highest among Sb2(S,Se)3-based solar cells with efficiencies exceeding 9.0 %. This research is anticipated to contribute to the preparation of high-quality Sb2(S,Se)3 thin film and the achievement of efficient inorganic Sb2(S,Se)3 PHJ photovoltaic device.

5.
Small ; 19(22): e2207966, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36861366

RESUMO

Herein, a novel combination of Mg- and Ga-co-doped ZnO (MGZO)/Li-doped graphene oxide (LGO) transparent electrode (TE)/electron-transporting layer (ETL) has been applied for the first time in Cu2 ZnSn(S,Se)4 (CZTSSe) thin-film solar cells (TFSCs). MGZO has a wide optical spectrum with high transmittance compared to that with conventional Al-doped ZnO (AZO), enabling additional photon harvesting, and has a low electrical resistance that increases electron collection rate. These excellent optoelectronic properties significantly improved the short-circuit current density and fill factor of the TFSCs. Additionally, the solution-processable alternative LGO ETL prevented plasma-induced damage to chemical bath deposited cadmium sulfide (CdS) buffer, thereby enabling the maintenance of high-quality junctions using a thin CdS buffer layer (≈30 nm). Interfacial engineering with LGO improved the Voc of the CZTSSe TFSCs from 466 to 502 mV. Furthermore, the tunable work function obtained through Li doping generated a more favorable band offset in CdS/LGO/MGZO interfaces, thereby, improving the electron collection. The MGZO/LGO TE/ETL combination achieved a power conversion efficiency of 10.67%, which is considerably higher than that of conventional AZO/intrinsic ZnO (8.33%).

6.
Chemistry ; 28(25): e202104453, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35224789

RESUMO

Nonfullerene acceptor based organic solar cells (NF-OSCs) have witnessed rapid progress over the past few years owing to the intensive research efforts on novel electron donor and nonfullerene acceptor (NFA) materials, interfacial engineering, and device processing techniques. Interfacial layers including electron transporting layers (ETL) and hole transporting layers (HTLs) are crucially important in the OSCs for facilitating electron and hole extraction from the photoactive blend to the respective electrodes. In this review, the lates progress in both ETLs and HTLs for the currently prevailing NF-OSCs are discussed, in which the ETLs are summarized from the categories of metal oxides, metal chelates, non-conjugated electrolytes and conjugated electrolytes, and the HTLs are summarized from the categories of inorganic and organic materials. In addition, some bifunctional interlayer materials served as both ETLs and HTLs are also introduced. Finally, the prospects of ETL/HTL materials for NF-OSCs are provided.

7.
Angew Chem Int Ed Engl ; 61(52): e202210610, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36308342

RESUMO

Electron transporting materials (ETMs) play vital roles in determining the efficiency and stability of inverted perovskite solar cells. The widely used PCBM is prone to undesirable aggregation and migration in a cell, thus impairing device stability. In this work, we develop a new type of ETMs by polymerizing C60 fullerene with an aromantic linker unit. The resultant polyfullerene (PFBS-C12) not only maintains the good optoelectronic properties of fullerenes, but also can address the aforementioned aggregation problem of PCBM. The polyfullerene-based blade-coated cells exhibit a high efficiency of 23.2 % and good device stability that maintain 96 % of initial efficiency after >1300-hour light soaking. An aperture efficiency of 18.9 % is also achieved on a 53.6-cm2 perovskite mini-module. This work provides a new strategy for designing ETMs that retain the key figure-of-merits of conventional fullerene molecules and enable more stable perovskite solar devices simultaneously.

8.
Angew Chem Int Ed Engl ; 61(11): e202116681, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35044716

RESUMO

The emitting layer based on a host-guest system plays a crucial role in organic light-emitting diodes (OLEDs). While emitters have witnessed rapid progress in structural diversity, hosts still rely heavily on traditional structures and are underdeveloped. Herein a "medium-ring" strategy has been put forward to design structurally nontraditional host molecules, which are not only rotatable enough to suppress close π-π stacking, thus reducing exciton annihilation, but also rigid enough to prevent excessive conformational flipping, thus inhibiting non-radiative decay. Accordingly, a brand-new type of bipolar hosts with a twisted "butterfly-shaped heptagonal acceptor (EtBP), which features an electron-deficient benzophenone fragment with a flexible ethylidene bridge, has been developed. With satisfactory morphological stability and well-balanced hole- and electron-transporting properties, the EtBP-based bipolar hosts enable high-performance RGB phosphorescent OLEDs with small efficiency roll-off, which are superior to those of acyclic benzophenone-based devices.

9.
Angew Chem Int Ed Engl ; 61(24): e202202898, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35349199

RESUMO

The academically widely used electron-transporting materials (ETMs) typically suffer from low glass transition temperatures (Tg ) that could lead to poor device stability. Considering practical applications, we herein put forward a "3D molecular interaction architecture" strategy to design high-performance ETMs. As a proof-of-concept, a type of structurally nontraditional ETMs with the benzo[c]cinnoline (BZC) skeleton have been proposed and synthesized by the C-H/C-H homo-coupling of N-acylaniline as the key step. 2,9-diphenylbenzo[c]cinnoline (DPBZC) exhibits strong intermolecular interactions that feature a 3D architecture, which boosts Tg to exceedingly high 218 °C with a fast electron mobility (µe ) of 6.4×10-4  cm2 V-1 s-1 . DPBZC-based fluorescent organic light-emitting diodes show outstanding electroluminescent performances with an external quantum efficiency of 20.1 % and a power efficiency as high as 70.6 lm W-1 , which are superior to those of the devices with the commonly used ETMs.

10.
Small ; 17(2): e2004778, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33325649

RESUMO

Electron transporting layers (ETLs), required to be optically transparent in perovskite solar cells (PSCs) having regular structures, possess a determinant effect on electron extraction and collection. Metal oxides (e.g., TiO2 ) have overwhelmingly served as ETLs, but usually have low electron mobility (µe  < 10-2  cm2 V-1 s-1 ) not favorable for photovoltaic conversion. Here, metal oxides are replaced with metals (e.g., Ti with µe  ≈ 294 cm2 V-1 s-1 ) that are sculptured via glancing angle deposition to be a close-packed nanopillar array (NaPA), which vertically protrudes on a transparent electrode to obtain sufficient optical transmission for light harvesting in perovskite. Ti NaPAs, whose rough surfaces are passivated with 5 nm thick TiO2 (i.e., Ti NaPAs@TiO2 ) to suppress exciton recombination, lead to the champion power conversion efficiency (PCE) of 18.89% that is superior to that of MAPbI3 PSCs without Ti NaPAs@TiO2 or containing TiO2 NaPAs@TiO2 , owing to high surface wettability, high µe , and relatively low work function of Ti. Furthermore, Ti NaPAs@TiO2 effectively prevents the decomposition of MAPbI3 to achieve long-term shelf stability whereby 50-day aging only causes 15% PCE degradation. This work paves the way toward widening the material spectrum, from semiconductors to metals, to generate a diverse range of ETLs for producing efficient optoelectronic devices with long-term shelf stability.

11.
Angew Chem Int Ed Engl ; 59(4): 1611-1618, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31664750

RESUMO

The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high-efficiency solar energy conversion. Now, a simple yet robust acid-treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron-transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2 , thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2 -coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2 . Compared to pristine TiO2 -based devices, the perovskite solar cells (PSCs) with acid-treated TiO2 ETL exhibit an enhanced short-circuit current and power conversion efficiency.

12.
Nano Lett ; 18(4): 2442-2449, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29539264

RESUMO

Organic-inorganic hybrid lead halide perovskites have been widely investigated in optoelectronics both experimentally and theoretically. The present work incorporates chemically modified graphene into nanocrystal SnO2 as the electron transporting layer (ETL) for highly efficient planar perovskite solar cells. The modification of SnO2 with highly conductive two-dimensional naphthalene diimide-graphene can increase surface hydrophobicity and form van der Waals interaction between the surfactant and the organic-inorganic hybrid lead halide perovskite compounds. As a result, highly efficient perovskite solar cells with power conversion efficiency of 20.2% can be achieved with an improved fill factor of 82%, which could be mainly attributed to the augmented charge extraction and transport.

13.
Angew Chem Int Ed Engl ; 58(51): 18460-18465, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31608557

RESUMO

Perovskite solar cells (PSCs) with power conversion efficiencies (PCEs) of 25 % mainly have SnO2 or TiO2 as electron-transporting layers (ETLs). Now, zinc titanate (ZnTiO3 , ZTO) is proposed as mesoporous ETLs owing to its weak photo-effect, excellent carrier extraction, and transfer properties. Uniform mesoporous films were obtained by spinning coating the ZTO ink and annealed below 150 °C. Photovoltaic devices based on Cs0.05 FA0.81 MA0.14 PbI2.55 Br0.45 perovskite sandwiched between SnO2 -mesorporous ZTO electrode and Spiro-OMeTAD layer achieved the PCE of 20.5 %. The PSCs retained more than 95 % of their original efficiency after 100 days lifetime test without being encapsulated. Additionally, the PSCs retained over 95 % of the initial performance when subjected at the maximum power point voltage for 120 h under AM 1.5 G illumination (100 mW cm-2 ), demonstrating superior working stability. The application of ZTO provides a better choice for ETLs of PSCs.

14.
Molecules ; 23(4)2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29587345

RESUMO

A new series of Fischer carbenes have been synthetized and examined as hole-transporting or electron-transporting layers (HTLs or ETLs) in the fabrication of organic solar cells (OSCs). The synthesis of three Fischer aminocarbene complexes with the general formula [Cr(CO)5{C(NHCH2)Ar}] (Ar = 2-pyridyl (3a), 3-pyridyl (3b) and 4-pyridyl (3c)) is reported. The molecular structure of complex 3b has been confirmed by X-ray analysis. In order to study the possible applications of the three Fischer aminocarbenes in OSCs, thin films of these complexes were prepared using a vacuum deposition process. These organometallic films were chemically and morphologically characterized by IR spectroscopy, SEM, AFM and XRD. According to the IR and Tauc analysis, the vacuum deposition process generates thin films free of impurities with an activation energy of 4.0, 2.7 and 2.1 eV for 3a, 3b y 3c, respectively. The UV-vis spectra of the amorphous aminocarbene films show that they are practically transparent to the visible radiation of the electromagnetic spectrum. This is due to the fact that their absorption is located mainly in the ultraviolet range. Two OSCs with bulk-heterojunction configuration were manufactured in order to prove the use of the aminocarbenes as ETL o HTL. The aminocarbene [Cr(CO)5{C(NHCH2) 4-pyridyl}] (3c) proved to be suitable as ETL with a fill factor (FF) of 0.23 and a short circuit current density (JSC) of 1.037 mA/cm².


Assuntos
Alcinos/química , Dioxolanos/química , Compostos Organometálicos/síntese química , Cristalografia por Raios X , Transporte de Elétrons , Estrutura Molecular , Compostos Organometálicos/química , Energia Renovável , Energia Solar
15.
Chemphyschem ; 18(17): 2390-2396, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28605155

RESUMO

Reflux of a solution of [Ti8 O12 (H2 O)24 ]Cl8 ⋅HCl⋅7 H2 O as titanium precursor at 120 °C for 24 h leads to a transparent colloidal solution of nanosized crystallized anatase TiO2 . The adjustment of the particle size and composition of the dispersant is monitored through the initial water content while controlling the conversion of propylene carbonate into propylene glycol during reflux. The solutions were processed as thin films to produce electron transporting layers in hybrid bulk heterojunction solar cells, by using a blend of P3HT:PCBM polymers as absorbers, in inverted architectures. The solutions obtained by reflux were demonstrated to produce suitable electron transporting layers.

16.
Angew Chem Int Ed Engl ; 56(46): 14648-14652, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28950414

RESUMO

Two cove-edge graphene nanoribbons hPDI2-Pyr-hPDI2 (1) and hPDI3-Pyr-hPDI3 (2) are used as efficient electron-transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power-conversion efficiencies (PCEs) of 15.6 % and 16.5 % for 1 and 2, respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]-phenyl-C61 -butyric acid methyl ester (PC61 BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that 1 and 2 act as efficient electron-extraction materials. Additionally, compared with PC61 BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability.

17.
Angew Chem Int Ed Engl ; 55(31): 8999-9003, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27273656

RESUMO

Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6 % with negligible hysteresis. This study provides one of the first nonfullerene small-molecule-based ETMs for high-performance p-i-n PVSCs.

18.
Macromol Rapid Commun ; 36(18): 1658-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26175078

RESUMO

Three new star-shaped macromolecules with hexakis(fluoren-2-yl)benzene as the core and pyridine as the periphery (2Py-HFB, 3Py-HFB, and 4Py-HFB) are synthesized and characterized. The synthetic conditions of octacarbonyldicobat-catalyzed cycloaddition reaction for different alkyne precursors are investigated. The coordination interaction between the pyridine ring of alkyne precursor and the cobalt catalyst may result in very low yield of the cyclotrimerization product. However, with the increase of the catalyst loading, the yields of the intermediates of cyclopentadienone are enhanced. Then, the desired cyclotrimerization products can be obtained by the Diels-Alder reactions of cyclopentadienone with acetylene in good yield. These new compounds exhibit good thermal stability and favorable electron affinity. By using the new compounds as electron-transporting materials, all-solution-processed phosphorescent organic light-emitting devices (OLEDs) show good performance with a maximum current efficiency of 5.6 cd A(-1) and maximum external quantum efficiency of 4.68%.


Assuntos
Benzeno/química , Piridinas/química , Transporte de Elétrons
19.
Adv Mater ; 36(35): e2310933, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38949017

RESUMO

Molecular doping is commonly utilized to tune the charge transport properties of organic semiconductors. However, applying this technique to electrically dope inorganic materials like metal oxide semiconductors is challenging due to the limited availability of molecules with suitable energy levels and processing characteristics. Herein, n-type doping of zinc oxide (ZnO) films is demonstrated using 1,3-dimethylimidazolium-2-carboxylate (CO2-DMI), a thermally activated organic n-type dopant. Adding CO2-DMI into the ZnO precursor solution and processing it atop a predeposited indium oxide (InOx) layer yield InOx/n-ZnO heterojunctions with increased electron field-effect mobility of 32.6 cm2 V-1 s-1 compared to 18.5 cm2 V-1 s-1 for the pristine InOx/ZnO bilayer. The improved electron transport originates from the ZnO's enhanced crystallinity, reduced hydroxyl concentrations, and fewer oxygen vacancy groups upon doping. Applying the optimally doped InOx/n-ZnO heterojunctions as the electron-transporting layers (ETLs) in organic photovoltaics (OPVs) yields cells with improved power conversion efficiency of 19.06%, up from 18.3% for devices with pristine ZnO, and 18.2% for devices featuring the undoped InOx/ZnO ETL. It is shown that the all-around improved OPV performance originates from synergistic effects associated with CO2-DMI doping of the thermally grown ZnO, highlighting its potential as an electronic dopant for ZnO and potentially other metal oxides.

20.
J Colloid Interface Sci ; 678(Pt B): 842-853, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39270385

RESUMO

Uniform and crack-free TiO2 inverse opal thin-films were successfully fabricated by simple template immersion method in pre-hydrolyzed TiCl4 precursor solution even though it is difficult to fabricate crack-free inverse opals through conventional solution drop-casting sol-gel process. Here, mechanically robust polystyrene (PS) colloidal crystal template in which PS particles are linked by polyvinylpyrrolidone bridges, were immersed in pre-hydrolyzed TiCl4 precursor solution to infiltrate the templates without inducing defects. By repeated soaking and drying process, and subsequent calcination, non-uniform and crack defects-free TiO2 inverse opal thin-films were fabricated reproducibly because PS templates immersed in the precursor solution experienced consistent fluid flow into their pores at uniform precursor concentration together with suppressed capillary pressure during drying as a result of low infiltration rate per cycle. Also, as an improvement to conventional approach, this facile fabrication method is adaptable for industrial scale-up. The resulting well-developed porous TiO2 inverse opal thin-films were applied for photovoltaic clean energy conversion as electron transporting scaffolds in antimony sulfide (Sb2S3) sensitized solar cells which had high power conversion efficiency of 7.30 % (1 sun), 8.56 % (0.5 sun), and 8.34 % (0.1 sun); showcasing improved device performance over previously reported mesoporous Sb2S3-sensitized solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA