Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurobiol Dis ; 199: 106600, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996985

RESUMO

Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.


Assuntos
Cerebelo , Disautonomia Familiar , Camundongos Knockout , Fenótipo , Animais , Disautonomia Familiar/genética , Disautonomia Familiar/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Camundongos , Modelos Animais de Doenças , Ataxia/genética , Ataxia/patologia , Ataxia/metabolismo , Células-Tronco Neurais/metabolismo , Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular
2.
Plant Biotechnol J ; 22(5): 1251-1268, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098341

RESUMO

The Elongator complex was originally identified as an interactor of hyperphosphorylated RNA polymerase II (RNAPII) in yeast and has histone acetyltransferase (HAT) activity. However, the genome-wide regulatory roles of Elongator on transcriptional elongation and histone acetylation remain unclear. We characterized a maize miniature seed mutant, mn7 and map-based cloning revealed that Mn7 encodes one of the subunits of the Elongator complex, ZmELP1. ZmELP1 deficiency causes marked reductions in the kernel size and weight. Molecular analyses showed that ZmELP1 interacts with ZmELP3, which is required for H3K14 acetylation (H3K14ac), and Elongator complex subunits interact with RNA polymerase II (RNAPII) C-terminal domain (CTD). Genome-wide analyses indicated that loss of ZmELP1 leads to a significant decrease in the deposition of H3K14ac and the CTD of phosphorylated RNAPII on Ser2 (Ser2P). These chromatin changes positively correlate with global transcriptomic changes. ZmELP1 mutation alters the expression of genes involved in transcriptional regulation and kernel development. We also showed that the decrease of Ser2P depends on the deposition of Elongator complex-mediated H3K14ac. Taken together, our results reveal an important role of ZmELP1 in the H3K14ac-dependent transcriptional elongation, which is critical for kernel development.


Assuntos
Histonas , RNA Polimerase II , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Histonas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Fosforilação , Acetilação , Estudo de Associação Genômica Ampla , Saccharomyces cerevisiae/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886984

RESUMO

Freezing stress is a major factor limiting production and geographical distribution of temperate crops. Elongator is a six subunit complex with histone acetyl-transferase activity and is involved in plant development and defense responses in Arabidopsis thaliana. However, it is unknown whether and how an elongator responds to freezing stress in plants. In this study, we found that wheat elongator subunit 4 (TaELP4) negatively regulates freezing tolerance through ethylene signaling. TaELP4 promoter contained cold response elements and was up-regulated in freezing stress. Subcellular localization showed that TaELP4 and AtELP4 localized in the cytoplasm and nucleus. Silencing of TaELP4 in wheat with BSMV-mediated VIGS approach significantly elevated tiller survival rate compared to control under freezing stress, but ectopic expression of TaELP4 in Arabidopsis increased leaf damage and survival rate compared with Col-0. Further results showed that TaELP4 positively regulated ACS2 and ACS6 transcripts, two main limiting enzymes in ethylene biosynthesis. The determination of ethylene content showed that TaELP4 overexpression resulted in more ethylene accumulated than Col-0 under freezing stress. Epigenetic research showed that histone H3K9/14ac levels significantly increased in coding/promoter regions of AtACS2 and AtACS6 in Arabidopsis. RT-qPCR assays showed that the EIN2/EIN3/EIL1-CBFs-COR pathway was regulated by TaELP4 under freezing stress. Taken together, our results suggest that TaELP4 negatively regulated plant responses to freezing stress via heightening histone acetylation levels of ACS2 and ACS6 and increasing their transcription and ethylene accumulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética , Triticum/metabolismo
4.
Plant J ; 104(2): 351-364, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652697

RESUMO

The Elongator complex, which is conserved in eukaryotes, has multiple roles in diverse organisms. In Arabidopsis thaliana, Elongator is shown to be involved in development, hormone action and environmental responses. However, except for Arabidopsis, our knowledge of its function is poor in plants. In this study, we initially carried out a genetic analysis to characterize a rice mutant with narrow and curled leaves, termed curled later1 (cur1). The cur1 mutant displayed a heteroblastic change, whereby the mutant leaf phenotype appeared specifically at a later adult phase of vegetative development. The shoot apical meristem (SAM) was small and the leaf initiation rate was low, suggesting that the activity of the SAM seemed to be partially reduced in cur1. We then revealed that CUR1 encodes a yeast ELP1-like protein, the largest subunit of Elongator. Furthermore, disruption of OsELP3 encoding the catalytic subunit of Elongator resulted in phenotypes similar to those of cur1, including the timing of the appearance of mutant phenotypes. Thus, Elongator activity seems to be specifically required for leaf development at the late vegetative phase. Transcriptome analysis showed that genes involved in protein quality control were highly upregulated in the cur1 shoot apex at the later vegetative phase, suggesting the restoration of impaired proteins probably produced by partial defects in translational control due to the loss of function of Elongator. The differences in the mutant phenotype and gene expression profile between CUR1 and its Arabidopsis ortholog suggest that Elongator has evolved to play a unique role in rice development.


Assuntos
Meristema/fisiologia , Oryza/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Histona Acetiltransferases/genética , Complexos Multiproteicos , Mutação , Oryza/crescimento & desenvolvimento , Fatores de Alongamento de Peptídeos/genética , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Biol Rep ; 48(1): 701-708, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33393008

RESUMO

Elongator is a multi-subunit protein complex bearing six different protein subunits, Elp1 to -6, that are highly conserved among eukaryotes. Elp2 is the second major subunit of Elongator and, together with Elp1 and Elp3, form the catalytic core of this essential complex. Pathogenic variants that affect the structure and function of the Elongator complex may cause neurodevelopmental disorders. Here, we report on a new family with three children affected with a severe form of intellectual disability along with spastic tetraparesis, choreoathetosis, and self injury. Molecular genetic analyses reveal a homozygous missense variant in the ELP2 gene (NM_018255.4 (ELP2): c.1385G > A (p.Arg462Gln)), while in silico studies suggest a loss of electrostatic interactions that may contribute to the overall stability of the encoded protein. We also include a comparison of the patients with ELP2-related neurodevelopmental disorder to those previously reported in the literature. Apart from being affected with intellectual disability, we have extremely limited clinical knowledge about patients harboring ELP2 variants. Besides providing support to the causal role of p.Arg462Gln in ELP2-related neurodevelopmental disorder, we add self-injurious behavior to the clinical phenotypic repertoire of the disease.


Assuntos
Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome de Lesch-Nyhan/genética , Paresia/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Sequência de Aminoácidos , Consanguinidade , Família , Feminino , Expressão Gênica , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndrome de Lesch-Nyhan/diagnóstico , Síndrome de Lesch-Nyhan/metabolismo , Síndrome de Lesch-Nyhan/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Paresia/diagnóstico , Paresia/metabolismo , Paresia/patologia , Linhagem , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Turquia , Sequenciamento do Exoma , Adulto Jovem
6.
Curr Genet ; 66(3): 481-485, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31776648

RESUMO

The translational decoding properties of tRNAs are influenced by post-transcriptional modification of nucleosides in their anticodon region. The Elongator complex promotes the first step in the formation of 5-methoxycarbonylmethyl (mcm5), 5-methoxycarbonylhydroxymethyl (mchm5), and 5-carbamoylmethyl (ncm5) groups on wobble uridine residues in eukaryotic cytosolic tRNAs. Elongator mutants in yeast, worms, plants, mice, and humans not only show a tRNA modification defect, but also a diverse range of additional phenotypes. Even though the phenotypes are almost certainly caused by the reduced functionality of the hypomodified tRNAs in translation, the basis for specific phenotypes is not well understood. Here, we discuss the recent finding that the phenotypes of Saccharomyces cerevisiae Elongator mutants are modulated by the genetic background. This background-effect is largely due to the allelic variation at the SSD1 locus, which encodes an mRNA-binding protein involved in post-transcriptional regulation of gene expression. A nonsense ssd1 allele is found in several wild-type laboratory strains and the presence of this allele aggravates the stress-induced phenotypes of Elongator mutants. Moreover, other phenotypes, such as the histone acetylation and telomeric gene silencing defects, are dependent on the mutant ssd1 allele. Thus, SSD1 is a genetic modifier of the phenotypes of Elongator-deficient yeast cells.


Assuntos
Mutação , Elongação Traducional da Cadeia Peptídica , Processamento Pós-Transcricional do RNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animais , Humanos , Camundongos , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Int J Mol Sci ; 21(3)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023806

RESUMO

Transfer RNAs (tRNAs) are the most post-transcriptionally modified RNA species. Some of these modifications, especially the ones located in the anti-codon loop, are required for decoding capabilities of tRNAs. Such is the case for 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U), synthetized by the Elongator complex. Mutants for its sub-units display pleiotropic phenotypes. In this paper, we analyze the role of elp3 (Elongator catalytic sub-unit) in zebrafish development. We found that it is required for trunk development; elp3 knock-down animals presented diminished levels of mcm5s2U and sonic hedgehog (Shh) signaling activity. Activation of this pathway was sufficient to revert the phenotype caused by elp3 knockdown, indicating a functional relationship between Elongator and Shh through a yet unknown molecular mechanism.


Assuntos
Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/metabolismo , RNA de Transferência/genética , Transdução de Sinais , Tiouridina/análogos & derivados , Tiouridina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Mol Biol (Mosk) ; 54(3): 450-456, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32492007

RESUMO

Boric acid is essential for plants and has many vital roles in animals and microorganisms. However, its high doses are toxic to all organisms. We previously screened yeast deletion collections to identify boric acid-resistant and susceptible mutants to identify genes that play a role in boron tolerance. Here, we analyzed boron resistant mutants (elplΔ, elp3Δ, elp6Δ, ncs2Δ, ncs6Δ and ktil2Δ) for their abilities to modulate the general amino acid control system (GAAC) and to induce boron efflux pump ATR1. The mutants analyzed in this study lack the genes that play roles in tRNA Wobble base modifications. We found that all of the boron resistant mutants activated Gcn4-dependent reporter gene activity and increased the transcript level of the ATR1 gene. Additionally, boron resistant cells accumulated less boric acid in their cytoplasm compared to the wild type cells upon boron exposure. Thus, our findings suggested that loss of wobble base modifications in tRNA leads to GAAC activation and ATR1 induction, which in turn reduced intracellular boron levels and caused boron resistance.


Assuntos
Ácidos Bóricos/farmacologia , Proteínas de Membrana Transportadoras/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Aminoácidos , Animais , Boro , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 112(34): 10697-702, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261306

RESUMO

The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is believed to be the primary cause of the devastating symptoms of this disease. Here, we demonstrate that disease-related mutations in Elp1 affect Elongator assembly, and we have determined the structure of the C-terminal portion of human Elp1 (Elp1-CT), which is sufficient for full-length Elp1 dimerization, as well as the structure of the cognate dimerization domain of yeast Elp1 (yElp1-DD). Our study reveals that the formation of the Elp1 dimer contributes to its stability in vitro and in vivo and is required for the assembly of both the human and yeast Elongator complexes. Functional studies suggest that Elp1 dimerization is essential for yeast viability. Collectively, our results identify the evolutionarily conserved dimerization domain of Elp1 and suggest that the pathological mechanisms underlying the onset and progression of Elp1 mutation-related disease may result from impaired Elongator activities.


Assuntos
Proteínas de Transporte/química , Splicing de RNA/genética , Animais , Proteínas de Transporte/genética , Sequência Conservada , Dimerização , Progressão da Doença , Disautonomia Familiar/genética , Disautonomia Familiar/fisiopatologia , Histona Acetiltransferases/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Fatores de Alongamento de Peptídeos/química , Fenótipo , Conformação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Relação Estrutura-Atividade , Fatores de Elongação da Transcrição
10.
BMC Plant Biol ; 17(1): 230, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191170

RESUMO

BACKGROUND: Plant immune response is associated with a large-scale transcriptional reprogramming, which is regulated by numerous transcription regulators such as the Elongator complex. Elongator is a multitasking protein complex involved in diverse cellular processes, including histone modification, DNA methylation, and tRNA modification. In recent years, Elongator is emerging as a key regulator of plant immune responses. However, characterization of Elongator's function in plant immunity has been conducted only in the model plant Arabidopsis thaliana. It is thus unclear whether Elongator's role in plant immunity is conserved in higher plants. The objective of this study is to characterize transgenic woodland strawberry (Fragaria vesca L.) overexpressing the Arabidopsis Elongator (AtELP) genes, AtELP3 and AtELP4, and to determine whether F. vesca carries a functional Elongator complex. METHODS: Transgenic F. vesca and Arabidopsis plants were produced via Agrobacterium-mediated genetic transformation and characterized by morphology, PCR, real-time quantitative PCR, and disease resistance test. The Student's t test was used to analyze the data. RESULTS: Overexpression of AtELP3 and AtELP4 in F. vesca impacts plant growth and development and confers enhanced resistance to anthracnose crown rot, powdery mildew, and angular leaf spot, which are caused by the hemibiotrophic fungal pathogen Colletotrichum gloeosporioides, the obligate biotrophic fungal pathogen Podosphaera aphanis, and the hemibiotrophic bacterial pathogen Xanthomonas fragariae, respectively. Moreover, the F. vesca genome encodes all six Elongator subunits by single-copy genes with the exception of FvELP4, which is encoded by two homologous genes, FvELP4-1 and FvELP4-2. We show that FvELP4-1 complemented the Arabidopsis Atelp4/elo1-1 mutant, indicating that FvELP4 is biologically functional. CONCLUSIONS: This is the first report on overexpression of Elongator genes in plants. Our results indicate that the function of Elongator in plant immunity is most likely conserved in F. vesca and suggest that Elongator genes may hold potential for helping mitigate disease severity and reduce the use of fungicides in strawberry industry.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Resistência à Doença/genética , Fragaria/genética , Histona Acetiltransferases/genética , Doenças das Plantas/imunologia , Proteínas de Arabidopsis/fisiologia , Fragaria/imunologia , Fragaria/microbiologia , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas
11.
Am J Med Genet A ; 167(6): 1391-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25847581

RESUMO

Elongator is a multi-subunit protein complex essential to transcription elongation, histone acetylation, and tRNA modification. The complex consists of six highly conserved protein subunits, called Elongator Proteins (ELP) 1-6. Apart from an association with intellectual disability (ID), there is limited clinical information about patients with ELP2 variants. Here we report on two brothers with severe ID, spastic diplegia, and self-injury whose presentation eluded a diagnosis for over 20 years. In both brothers, whole exome sequencing revealed a likely pathogenic, compound heterozygous missense variant in ELP2. We describe the phenotype and natural history of the ELP2-related disorder in these brothers.


Assuntos
Paralisia Cerebral/genética , Exoma , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação de Sentido Incorreto , Comportamento Autodestrutivo/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Paralisia Cerebral/diagnóstico , Paralisia Cerebral/patologia , Expressão Gênica , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Comportamento Autodestrutivo/diagnóstico , Comportamento Autodestrutivo/patologia , Irmãos
12.
Biochem Biophys Res Commun ; 454(3): 441-5, 2014 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-25450681

RESUMO

Familial dysautonomia (FD) is a recessive neurodegenerative genetic disease. FD is caused by a mutation in the IKBKAP gene resulting in a splicing defect and reduced levels of full length IKAP protein. IKAP homologues can be found in all eukaryotes and are part of a conserved six subunit protein complex, Elongator complex. Inactivation of any Elongator subunit gene in multicellular organisms cause a wide range of phenotypes, suggesting that Elongator has a pivotal role in several cellular processes. In yeast, there is convincing evidence that the main role of Elongator complex is in formation of modified wobble uridine nucleosides in tRNA and that their absence will influence translational efficiency. To date, no study has explored the possibility that FD patients display defects in formation of modified wobble uridine nucleosides as a consequence of reduced IKAP levels. In this study, we show that brain tissue and fibroblast cell lines from FD patients have reduced levels of the wobble uridine nucleoside 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). Our findings indicate that FD could be caused by inefficient translation due to lower levels of wobble uridine nucleosides.


Assuntos
Encéfalo/patologia , Disautonomia Familiar/patologia , Fibroblastos/patologia , RNA de Transferência/química , Tiouridina/análogos & derivados , Encéfalo/metabolismo , Linhagem Celular , Disautonomia Familiar/metabolismo , Fibroblastos/metabolismo , Humanos , RNA de Transferência/metabolismo , Tiouridina/análise , Tiouridina/metabolismo
13.
RNA Biol ; 11(12): 1519-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25607684

RESUMO

Elongator is a 6 subunit protein complex highly conserved in eukaryotes. The role of this complex has been controversial as the pleiotropic phenotypes of Elongator mutants have implicated the complex in several cellular processes. However, in yeast there is convincing evidence that the primary and probably only role of this complex is in formation of the 5-methoxycarbonylmethyl (mcm(5)) and 5-carbamoylmethyl (ncm(5)) side chains on uridines at wobble position in tRNA. In this review we summarize the cellular processes that have been linked to the Elongator complex and discuss its role in tRNA modification and regulation of translation. We also describe additional gene products essential for formation of ncm(5) and mcm(5) side chains at U34 and their influence on Elongator activity.


Assuntos
Histona Acetiltransferases/química , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Uridina/metabolismo , Animais , Anticódon/química , Anticódon/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Códon/química , Códon/metabolismo , Código Genético , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Uridina/genética
14.
EMBO Mol Med ; 15(2): e16418, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36448458

RESUMO

The Elongator complex was initially identified in yeast, and a variety of distinct cellular functions have been assigned to the complex. In the last decade, several research groups focussed on dissecting its structure, tRNA modification activity and role in translation regulation. Recently, Elongator emerged as a crucial factor for various human diseases, and its involvement has triggered a strong interest in the complex from numerous clinical groups. The Elongator complex is highly conserved among eukaryotes, with all six subunits (Elp1-6) contributing to its stability and function. Yet, recent studies have shown that the two subcomplexes, namely the catalytic Elp123 and accessory Elp456, may have distinct roles in the development of different neuronal subtypes. This Commentary aims to provide a brief overview and new perspectives for more systematic efforts to explore the functions of the Elongator in health and disease.


Assuntos
Saccharomyces cerevisiae , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Saccharomyces cerevisiae/genética
15.
EMBO Mol Med ; 14(7): e15608, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35698786

RESUMO

The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.


Assuntos
RNA de Transferência , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Front Plant Sci ; 13: 1033358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340367

RESUMO

The Elongator complex in eukaryotes has conserved tRNA modification functions and contributes to various physiological processes such as transcriptional control, DNA replication and repair, and chromatin accessibility. ARABIDOPSIS ELONGATOR PROTEIN 4 (AtELP4) is one of the six subunits (AtELP1-AtELP6) in Arabidopsis Elongator. In addition, there is an Elongator-associated protein, DEFORMED ROOTS AND LEAVES 1 (DRL1), whose homolog in yeast (Kti12) binds tRNAs. In this study, we explored the functions of AtELP4 in plant-specific aspects such as leaf morphogenesis and evolutionarily conserved ones between yeast and Arabidopsis. ELP4 comparison between yeast and Arabidopsis revealed that plant ELP4 possesses not only a highly conserved P-loop ATPase domain but also unknown plant-specific motifs. ELP4 function is partially conserved between Arabidopsis and yeast in the growth sensitivity toward caffeine and elevated cultivation temperature. Either single Atelp4 or drl1-102 mutants and double Atelp4 drl1-102 mutants exhibited a reduction in cell proliferation and changed the adaxial-abaxial polarity of leaves. In addition, the single Atelp4 and double Atelp4 drl1-102 mutants showed remarkable downward curling at the whole part of leaf blades in contrast to wild-type leaf blades. Furthermore, our genetic study revealed that AtELP4 might epistatically act on DRL1 in the regulation of cell proliferation and dorsoventral polarity in leaves. Taken together, we suggest that AtELP4 as part of the plant Elongator complex may act upstream of a regulatory pathway for adaxial-abaxial polarity and cell proliferation during leaf development.

17.
Front Cell Dev Biol ; 10: 1015125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393857

RESUMO

The six subunits (Elp1 to Elp6) Elongator complex promotes specific uridine modifications in tRNA's wobble site. Moreover, this complex has been indirectly involved in the regulation of α-tubulin acetylation in microtubules (MTs) via the stabilization of ATP-Citrate Lyase (Acly), the main cytosolic source of acetyl-CoA production in cells, a key substrate used for global protein acetylation. Here, we report additional evidence that Elongator activity is important for proper cytoskeleton remodeling as cells lacking expression of Elp1 show morphology impairment; including distinct neurite process formation and disorganization and instability of MTs. Here, we show that loss of Elongator results in a reduction of expression of the microtubule associated protein Tau (MAPT). Tau, is a well-known key MT regulator in neurons whose lysines can be competitively acetylated or ubiquitylated. Therefore, we tested whether Tau is an indirect acetylation target of Elongator. We found that a reduction of Elongator activity leads to a decrease of lysine acetylation on Tau that favors its proteasomal degradation. This phenotype was prevented by using selective deacetylase or proteasomal inhibitors. Moreover, our data demonstrate that Acly's activity regulates the mechanism underlying Tau mediated neurite morphology defects found in Elp1 KD since both Tau levels and neurites morphology are restored due to Acly overexpression. This suggests a possible involvement of both Tau and Acly dysfunction in Familial Dysautonomia (FD), which is an autosomal recessive peripheral neuropathy caused by mutation in the ELP1 gene that severely affects Elp1 expression levels in the nervous system in FD patients in a similar way as found previously in Elp1 KD neuroblastoma cells.

18.
J Exp Clin Cancer Res ; 40(1): 373, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823564

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is known for its high malignancy and multidrug resistance. Previously, we uncovered that impaired integrity and stability of the elongator complex leads to GBC chemotherapy resistance, but whether its restoration can be an efficient therapeutic strategy for GBC remains unknown. METHODS: RT-qPCR, MS-qPCR and ChIP-qPCR were used to evaluate the direct association between ELP5 transcription and DNA methylation in tumour and non-tumour tissues of GBC. EMSA, chromatin accessibility assays, and luciferase assays were utilized to analysis the DNA methylation in interfering PAX5-DNA interactions. The functional experiments in vitro and in vivo were performed to investigate the effects of DNA demethylating agent decitabine (DAC) on the transcription activation of elongator complex and the enhanced sensitivity of gemcitabine in GBC cells. Tissue microarray contains GBC tumour tissues was used to evaluate the association between the expression of ELP5, DNMT3A and PAX5. RESULTS: We demonstrated that transcriptional repression of ELP5 in GBC was highly correlated with hypermethylation of the promoter. Mechanistically, epigenetic analysis revealed that DNA methyltransferase DNMT3A-catalysed hypermethylation blocked transcription factor PAX5 activation of ELP5 by disrupting PAX5-DNA interaction, resulting in repressed ELP5 transcription. Pharmacologically, the DNA demethylating agent DAC eliminated the hypermethylated CpG dinucleotides in the ELP5 promoter and then facilitated PAX5 binding and reactivated ELP5 transcription, leading to the enhanced function of the elongator complex. To target this mechanism, we employed a sequential combination therapy of DAC and gemcitabine to sensitize GBC cells to gemcitabine-therapy through epigenetic activation of the elongator complex. CONCLUSIONS: Our findings suggest that ELP5 expression in GBC is controlled by DNA methylation-sensitive induction of PAX5. The sequential combination therapy of DAC and gemcitabine could be an efficient therapeutic strategy to overcome chemotherapy resistance in GBC.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Epigenômica/métodos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias da Vesícula Biliar/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Gencitabina
19.
Front Plant Sci ; 12: 691790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589093

RESUMO

Background: Plants subjected to the novel environment of spaceflight show transcriptomic changes that resemble aspects of several terrestrial abiotic stress responses. Under investigation here is whether epigenetic modulations, similar to those that occur in terrestrial stress responses, have a functional role in spaceflight physiological adaptation. The Advanced Plant Experiment-04 - Epigenetic Expression experiment examined the role of cytosine methylation in spaceflight adaptation. The experiment was conducted onboard the International Space Station, and evaluated the spaceflight-altered, genome-wide methylation profiles of two methylation-regulating gene mutants [methyltransferase 1 (met1-7) and elongator complex subunit 2 (elp2-5)] along with a wild-type Col-0 control. Results: The elp2-5 plants suffered in their physiological adaptation to spaceflight in that their roots failed to extend away from the seed and the overall development of the plants was greatly impaired in space. The met1-7 plants suffered less, with their morphology affected by spaceflight in a manner similar to that of the Col-0 controls. The differentially expressed genes (DEGs) in spaceflight were dramatically different in the elp2-5 and met1-7 plants compared to Col-0, indicating that the disruptions in these mutants resulted in a reprogramming of their spaceflight responses, especially in elp2-5. Many of the genes comprising the spaceflight transcriptome of each genotype were differentially methylated in spaceflight. In Col-0 the majority of the DEGs were representative of the now familiar spaceflight response, which includes genes associated with cell wall remodeling, pathogen responses and ROS signaling. However, the spaceflight transcriptomes of met1-7 and elp2-5 each presented patterns of DEGs that are almost completely different than Col-0, and to each other. Further, the DEGs of the mutant genotypes suggest a more severe spaceflight stress response in the mutants, particularly in elp2-5. Conclusion: Arabidopsis physiological adaptation to spaceflight results in differential DNA methylation in an organ-specific manner. Disruption of Met1 methyltransferase function does not dramatically affect spaceflight growth or morphology, yet met1-7 reprograms the spaceflight transcriptomic response in a unique manner. Disruption of elp2-5 results in poor development in spaceflight grown plants, together with a diminished, dramatically reprogrammed transcriptomic response.

20.
Mol Syndromol ; 11(5-6): 315-319, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33510603

RESUMO

The elongator complex consists of 6 highly conserved subunit proteins and is indispensable for various cellular functions, such as transcription elongation, histone acetylation, and tRNA modification. The elongator complex contains 2 subunits, each of which consists of 3 different proteins (encoded by the ELP1-3 and ELP4-6 genes). According to the OMIM database, ELP2 gene variations have been reported to be associated with autosomal recessive mental retardation type 58. Here, we report a male patient with severe intellectual disability, spastic diplegia, and stereotypic behavior; in addition, we also provide a review of the current literature. Using whole-exome sequencing analysis, we detected a novel compound heterozygous variation in the ELP2 gene. We present this case report to clarify the clinical findings of a very rare neurodevelopmental phenotype and to contribute new information to the current literature on genotype-phenotype correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA