Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603796

RESUMO

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Assuntos
Diapausa , Nutrientes , Animais , Feminino , Camundongos , Blastocisto/metabolismo , Diapausa/fisiologia , Desenvolvimento Embrionário/fisiologia
2.
Curr Issues Mol Biol ; 46(4): 3676-3693, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38666959

RESUMO

Artemia is a widely distributed small aquatic crustacean, renowned for its ability to enter a state of embryonic diapause. The embryonic diapause termination (EDT) is closely linked to environmental cues, but the precise underlying mechanisms remain elusive. In this study, ATAC-seq and RNA-seq sequencing techniques were employed to explore the gene expression profiles in Artemia cysts 30 min after EDT. These profiles were compared with those during diapause and 5 h after EDT. The regulatory mechanisms governing the EDT process were analyzed through Gene Ontology (GO) enrichment analysis of differentially expressed genes. Furthermore, the active G-protein-coupled receptors (GPCRs) were identified through structural analysis. The results unveiled that the signaling transduction during EDT primarily hinges on GPCRs and the cell surface receptor signaling pathway, but distinct genes are involved across different stages. Hormone-mediated signaling pathways and the tachykinin receptor signaling pathway exhibited heightened activity in the '0-30 min' group, whereas the Wnt signaling pathway manifested its function solely in the '30 min-5 h' group. These results imply a complete divergence in the mechanisms of signal regulation during these two stages. Moreover, through structural analysis, five GPCRs operating at different stages of EDT were identified. These findings provide valuable insights into the signal regulation mechanisms governing Artemia diapause.

3.
Zoolog Sci ; 41(2): 141-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587909

RESUMO

The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Animais , Bombyx/metabolismo , DNA Complementar , Gânglios , Opsinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649221

RESUMO

Embryonic diapause (ED) is a temporary arrest of an embryo at the blastocyst stage when it waits for the uterine receptivity signal to implant. ED used by over 100 species may also occur in normally "nondiapausing" mammals when the uterine receptivity signal is blocked or delayed. A large number of lipid droplets (LDs) are stored throughout the preimplantation embryo development, but the amount of lipids varies greatly across different mammalian species. Yet, the role of LDs in the mammalian egg and embryo remains unknown. Here, using a mouse model, we provide evidence that LDs play a crucial role in maintaining ED. By mechanical removal of LDs from zygotes, we demonstrated that delipidated embryos are unable to survive during ED. LDs are not essential for normal prompt implantation, without ED. We further demonstrated that with the progression of ED, the amount of intracellular lipid reduces, and composition changes. This decrease in lipid is caused by a switch from carbohydrate metabolism to lipid catabolism in diapausing blastocysts, which also exhibit increased release of exosomes reflecting elevated embryonic signaling to the mother. We have also shown that presence of LDs in the oocytes of various mammals positively corelates with their species-specific length of diapause. Our results reveal the functional role of LDs in embryonic development. These results can help to develop diagnostic techniques and treatment of recurrent implantation failure and will likely ignite further studies in developmental biology and reproductive medicine fields.


Assuntos
Blastocisto/metabolismo , Diapausa , Gotículas Lipídicas/metabolismo , Zigoto/metabolismo , Animais , Feminino , Camundongos
5.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452997

RESUMO

Embryonic diapause in mammals leads to a reversible developmental arrest. While completely halted in many species, European roe deer (Capreolus capreolus) embryos display a continuous deceleration of proliferation. During a 4-mo period, the cell doubling time is 2 to 3 wk. During this period, the preimplantation blastocyst reaches a diameter of 4 mm, after which it resumes a fast developmental pace to subsequently implant. The mechanisms regulating this notable deceleration and reacceleration upon developmental resumption are unclear. We propose that amino acids of maternal origin drive the embryonic developmental pace. A pronounced change in the abundance of uterine fluid mTORC1-activating amino acids coincided with an increase in embryonic mTORC1 activity prior to the resumption of development. Concurrently, genes related to the glycolytic and phosphate pentose pathway, the TCA cycle, and one carbon metabolism were up-regulated. Furthermore, the uterine luminal epithelial transcriptome indicated increased estradiol-17ß signaling, which likely regulates the endometrial secretions adapting to the embryonic needs. While mTORC1 was predicted to be inactive during diapause, the residual embryonic mTORC2 activity may indicate its involvement in maintaining the low yet continuous proliferation rate during diapause. Collectively, we emphasize the role of nutrient signaling in preimplantation embryo development. We propose selective mTORC1 inhibition via uterine catecholestrogens and let-7 as a mechanism regulating slow stem cell cycle progression.


Assuntos
Aminoácidos/metabolismo , Cervos/embriologia , Diapausa , Embrião de Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Blastocisto/citologia , Proliferação de Células , Microambiente Celular , Cervos/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Feminino , Perfilação da Expressão Gênica , Gravidez , Útero/metabolismo
6.
Semin Cancer Biol ; 81: 132-144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34670140

RESUMO

Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.


Assuntos
Neoplasias , Animais , Blastômeros/metabolismo , Feminino , Células Gigantes/metabolismo , Humanos , Estágios do Ciclo de Vida , Neoplasias/tratamento farmacológico , Neoplasias/genética , Poliploidia , Gravidez
7.
Zoolog Sci ; 38(4): 305-310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342950

RESUMO

To clarify the molecular mechanism of prevention of entry into diapause in Bombyx mori by HCl treatment, we biochemically analyzed calcineurin regulatory B subunit (CNB) in diapause eggs treated with HCl solution. Our previous studies revealed that HCl treatment causes Ca2+ to efflux from diapause eggs. Therefore, we attempted to analyze CNB, which is known to associate with Ca2+. The gene expression level of CNB was increased by HCl treatment and the changes of the gene expression were almost the same as that in the non-diapause eggs. As for diapause eggs, almost no gene expression of CNB was confirmed except just after oviposition. In the assay for phosphorylation by protein kinase CK2, recombinant CNB (rCNB) was phosphorylated in vitro. Additionally, a Ca2+ binding assay indicated that rCNB shows affinity for Ca2+. The distribution of CNB was investigated with an immunohistochemical technique using antiserum against rCNB in diapause eggs and HCl-treated diapause eggs. CNB was localized in serosa cells and yolk cells in both eggs. These data may suggest that CNB is activated by intracellular Ca2+ or efflux Ca2+ resulting from HCl treatment, and that it plays a role in the molecular mechanisms of artificial diapause prevention or the breaking of diapause in the silkworm.


Assuntos
Bombyx/fisiologia , Calcineurina/metabolismo , Diapausa , Proteínas de Insetos/metabolismo , Subunidades Proteicas/metabolismo , Animais , Bombyx/efeitos dos fármacos , Bombyx/genética , Calcineurina/química , Calcineurina/genética , Cálcio/metabolismo , Diapausa/efeitos dos fármacos , Regulação da Expressão Gênica , Ácido Clorídrico/farmacologia , Imuno-Histoquímica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Óvulo/metabolismo , Fosforilação , Análise Serial de Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Distribuição Tecidual
8.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766734

RESUMO

microRNAs are ~22bp nucleotide non-coding RNAs that play important roles in the post-transcriptional regulation of gene expression. Many studies have established that microRNAs are important for cell fate choices, including the naïve to primed pluripotency state transitions, and their intermediate state, the developmentally suspended diapause state in early development. However, the full extent of microRNAs associated with these stage transitions in human and mouse remain under-explored. By meta-analysis of microRNA-seq, RNA-seq, and metabolomics datasets from human and mouse, we found a set of microRNAs, and importantly, their experimentally validated target genes that show consistent changes in naïve to primed transitions (microRNA up, target genes down, or vice versa). The targets of these microRNAs regulate developmental pathways (e.g., the Hedgehog-pathway), primary cilium, and remodeling of metabolic processes (oxidative phosphorylation, fatty acid metabolism, and amino acid transport) during the transition. Importantly, we identified 115 microRNAs that significantly change in the same direction in naïve to primed transitions in both human and mouse, many of which are novel candidate regulators of pluripotency. Furthermore, we identified 38 microRNAs and 274 target genes that may be involved in diapause, where embryonic development is temporarily suspended prior to implantation to uterus. The upregulated target genes suggest that microRNAs activate stress response in the diapause stage. In conclusion, we provide a comprehensive resource of microRNAs and their target genes involved in naïve to primed transition and in the paused intermediate, the embryonic diapause stage.


Assuntos
Bases de Dados Genéticas , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia
9.
J Exp Biol ; 221(Pt 24)2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30385483

RESUMO

Diapause is an alternative life-history strategy that allows organisms to enter developmental arrest in anticipation of unfavorable conditions. Diapause is widespread among insects and plays a key role in enhancing overwinter survival as well as defining the seasonal and geographic distributions of populations. Next-generation sequencing has greatly advanced our understanding of the transcriptional basis for this crucial adaptation but less is known about the regulation of embryonic diapause physiology at the metabolite level. Here, we characterized the lipid and metabolite profiles of embryonic diapause in the Asian tiger mosquito, Aedes albopictus We used an untargeted approach to capture the relative abundance of 250 lipids and 241 metabolites. We observed adjustments associated with increased energy storage, including an accumulation of lipids, the formation of larger lipid droplets and increased lipogenesis, as well as metabolite shifts suggesting reduced energy utilization. We also found changes in neuroregulatory- and insulin-associated metabolites with potential roles in diapause regulation. Finally, we detected a group of unidentified, diapause-specific metabolites which have physical properties similar to those of steroids/steroid derivatives and may be associated with the ecdysteroidal regulation of embryonic diapause in A.albopictus Together, these results deepen our understanding of the metabolic regulation of embryonic diapause and identify key targets for future investigations.


Assuntos
Aedes/fisiologia , Diapausa de Inseto/fisiologia , Metabolismo dos Lipídeos , Metaboloma , Aedes/embriologia , Animais , Embrião não Mamífero/fisiologia
10.
Zoo Biol ; 36(3): 193-200, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28230329

RESUMO

Red pandas (Ailurus fulgens styani) exhibit a variable gestation length and may experience a pseudopregnancy indistinguishable from true pregnancy; therefore, it is not possible to deduce an individual's true pregnancy status and parturition date based on breeding dates or fecal progesterone excretion patterns alone. The goal of this study was to evaluate the use of transabdominal ultrasonography for pregnancy diagnosis in red pandas. Two to three females were monitored over 4 consecutive years, generating a total of seven profiles (four pregnancies, two pseudopregnancies, and one lost pregnancy). Fecal samples were collected and assayed for progesterone (P4) and estrogen conjugate (EC) to characterize patterns associated with breeding activity and parturition events. Animals were trained for voluntary transabdominal ultrasound and examinations were performed weekly. Breeding behaviors and fecal EC data suggest that the estrus cycle of this species is 11-12 days in length. Fecal steroid metabolite analyses also revealed that neither P4 nor EC concentrations were suitable indicators of pregnancy in this species; however, a secondary increase in P4 occurred 69-71 days prior to parturition in all pregnant females, presumably coinciding with embryo implantation. Using ultrasonography, embryos were detected as early as 62 days post-breeding/50 days pre-partum and serial measurements of uterine lumen diameter were documented throughout four pregnancies. Advances in reproductive diagnostics, such as the implementation of ultrasonography, may facilitate improved husbandry of pregnant females and allow for the accurate prediction of parturition.


Assuntos
Ailuridae/fisiologia , Fezes/química , Prenhez , Esteroides/química , Ultrassonografia Pré-Natal/veterinária , Animais , Animais de Zoológico , Feminino , Parto , Gravidez , Progesterona/química
11.
Semin Cell Dev Biol ; 34: 56-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24862857

RESUMO

Embryo implantation in eutherian mammals is a highly complex process and requires reciprocal communication between different cell types of the embryo at the blastocyst stage and receptive uterus. The events of implantation are dynamic and highly orchestrated over a species-specific period of time with distinctive and overlapping expression of many genes. Delayed implantation in different species has helped elucidate some of the intricacies of implantation timing and different modes of the implantation process. How these events are coordinated in time and space are not clearly understood. We discuss potential regulators of the precise timing of these events with respect to central and local clock mechanisms. This review focuses on the timing and synchronization of early pregnancy events in mouse and consequences of their aberrations at later stages of pregnancy.


Assuntos
Útero/fisiologia , Animais , Blastocisto/fisiologia , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica , Humanos , Gravidez
12.
J Biol Chem ; 290(24): 15337-49, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25931120

RESUMO

Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses ("pseudoimplantation") that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause.


Assuntos
Desenvolvimento Embrionário/genética , Genes Homeobox , Proteínas de Homeodomínio/fisiologia , Inflamação/genética , Fator de Transcrição MSX1/fisiologia , Músculo Liso/patologia , Útero/patologia , Animais , Feminino , Proteínas de Homeodomínio/genética , Fator de Transcrição MSX1/genética , Camundongos , Camundongos Knockout , Gravidez , Útero/metabolismo
13.
Zoolog Sci ; 32(2): 124-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25826059

RESUMO

To elucidate the mechanism for preventing entry into embryonic diapause or breakdown of diapause in Bombyx mori by HCl and dimethyl sulfoxide (DMSO) treatment or a combination of cold and HCl treatment, we performed quantitative analysis of Ca2+ and Mg2+ in the chorion and egg content using inductively coupled plasma atomic emission spectrometry (ICP-AES). When diapause eggs that had been incubated at 25°C for 2 days from oviposition and at 4°C for an additional six days were treated with HCl solution, the amount of Ca2+ in the chorion and egg content after HCl treatment was reduced to one-seventh, as compared with the amount before treatment. In contrast, there was no change in the amount of Mg2+ with HCl treatment. The amount of Ca2+ in the HCl solution after the diapause eggs were treated increased 7.5-fold, as compared with that of eggs treated with water. Even when 17-day-old diapausing eggs were treated with HCl, which did not break diapause, the amount of Ca2+ in the chorion and egg content was reduced to one-fifth, as compared with the control. Meanwhile, changes in Ca2+ and Mg2+ contents were not observed in 12-hr-old diapause-destined eggs before or after treatment with DMSO, which effectively prevents diapause. These data may suggest that Ca2+ efflux from diapause eggs by HCl is not directly associated with preventing entry into diapause or breaking of diapause. In addition, we discovered that the amount of Ca2+ in diapause-destined eggs was more than 2.4-fold larger than in non-diapause-destined eggs.


Assuntos
Bombyx/efeitos dos fármacos , Cálcio/metabolismo , Diapausa de Inseto/efeitos dos fármacos , Ácido Clorídrico/farmacologia , Óvulo/efeitos dos fármacos , Animais , Bombyx/fisiologia , Temperatura Baixa , Diapausa de Inseto/fisiologia , Dimetil Sulfóxido/farmacologia , Magnésio/metabolismo , Óvulo/fisiologia , Água/química
14.
Biol Reprod ; 90(3): 52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24451987

RESUMO

Among nearly 100 mammalian species, implantation can be suspended at blastocyst stage for a certain time and reactivated under favorable conditions, a phenomenon known as embryonic diapause. Until now, the underlying molecular mechanism governing embryonic diapause and reactivation for implantation remained largely unknown. Here we conducted the first integral proteomic analysis of blastocysts from diapause to reactivation by using a physiologically relevant mouse delayed implantation model. More than 6000 dormant and reactivated blastocysts were used for the proteomic analysis. A total of 2255 proteins were detected. Various cellular and molecular processes, including protein translation, aerobic glycolysis, pentose phosphate pathway, purine nucleotide biosynthesis, glutathione metabolism, and chromatin organization were identified as differentially regulated. In particular, we demonstrated a remarkable activation of mitochondria in blastocysts upon reactivation from dormancy, highlighting their essential physiological significance. Moreover, the activities of the endosome-lysosome system were prominently enhanced in the mural trophectoderm of reactivated blastocysts, accompanied by active phagocytosis at the fetal-maternal interface, suggesting a critical role in promoting trophoblast invasion. Collectively, we provided an integral proteomic view upon the regulatory network of blastocyst reactivation from diapause, which will help to better interpret the nature of embryonic diapause and reactivation in wild animals and to identify molecular indicators for selecting blastocysts with high implantation competency.


Assuntos
Blastocisto/metabolismo , Blastocisto/fisiologia , Implantação do Embrião/genética , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Blastocisto/química , Western Blotting , Cromatografia Líquida de Alta Pressão , Corantes , Endossomos/fisiologia , Metabolismo Energético/fisiologia , Feminino , Imunofluorescência , Glutationa/metabolismo , Leucina/metabolismo , Lisossomos/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Via de Pentose Fosfato/fisiologia , Gravidez , Nucleotídeos de Purina/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
15.
Trends Cell Biol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897887

RESUMO

Embryonic and adult stem cells enable development and regeneration. Embryonic cells, like adult stem cells, can enter dormancy as part of their lifecycle. Recent evidence suggests that this cellular transition to dormancy requires active rewiring of metabolism. The dormancy-induced metabolic switches in embryonic and adult stem cells are explored here.

16.
Cell Stem Cell ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39047740

RESUMO

Embryonic diapause is a reproductive adaptation that enables some mammalian species to halt the otherwise continuous pace of embryonic development. In this dormant state, the embryo exploits poorly understood regulatory mechanisms to preserve its developmental potential for prolonged periods of time. Here, using mouse embryos and single-cell RNA sequencing, we molecularly defined embryonic diapause at single-cell resolution, revealing transcriptional dynamics while the embryo seemingly resides in a state of suspended animation. Additionally, we found that the dormant pluripotent cells rely on integrin receptors to sense their microenvironment and preserve their viability via Yap/Taz-mediated prosurvival signaling.

17.
Genes (Basel) ; 14(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37761899

RESUMO

Mink embryos enter a period of diapause after the embryo develops into the blastocyst, and its reactivation is mainly caused by an increase in polyamine. The specific process of embryo diapause regulation and reactivation remains largely unexamined. This study aimed to identify changes in metabolites in the early pregnancy of mink by comparing and analyzing in serum metabolites up to twenty-nine days after mating. Blood samples were taken on the first day of mating, once a week until the fifth week. Metabolomic profiles of the serum samples taken during this period were analyzed by ultra-performance liquid chromatography/mass spectrometry. Multivariate statistical analyses identified differential metabolite expression at different time points in both positive and negative ion modes. The levels of dopamine, tyramine, L-phenylalanine, L-tyrosine, tyrosine, L-kynurenine, L-lysine, L-arginine, D-ornithine, and leucine changed significantly. These metabolites may be associated with the process of embryo diapause and subsequent reactivation.


Assuntos
Desenvolvimento Embrionário , Vison , Gravidez , Animais , Feminino , Blastocisto/metabolismo , Embrião de Mamíferos/fisiologia , Reprodução
18.
Reprod Sci ; 30(2): 494-525, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35641857

RESUMO

Under ovarian hormone control, dormant blastocysts obtain implantation capacity (known as blastocyst activation) through their global gene expression. After the activated blastocysts communicate with the receptive uterus, the implantation-competent blastocysts start the implantation. Although dormant and activated blastocysts have different gene expression levels, the regulatory mechanisms underlying these transcriptions remain unclear. Hence, this study aimed to analyze epigenetic marks in dormant and activated blastocysts. In mice, blastocyst dormancy is artificially induced by daily progesterone injection without estrogen supplementation after peri-implantation ovariectomy; when estrogen is administered concomitantly, blastocyst activation and implantation occur. These phenomena demonstrate a mouse model of delayed implantation. We collected dormant and activated blastocysts from a delayed implantation mouse model. RNA-seq, methylated DNA immunoprecipitation (MeDIP)-seq, and chromatin immunoprecipitation (ChIP)-seq for H3K4 me3 and H3K27 me3 were performed using dormant and activated blastocysts. Cell cycle-related transcripts were affected during blastocyst activation. DNA methylations were accumulated in downregulated genes in the activated blastocysts. Histone H3 trimethylations were globally altered between the dormant and activated blastocysts. Dormant and activated blastocysts have unique methylation patterns on DNA and histone H3, with high correlation to gene expression. DNA methylation and histone modification can regulate preimplantation blastocyst activation.


Assuntos
Metilação de DNA , Histonas , Feminino , Camundongos , Animais , Histonas/metabolismo , Código das Histonas , Implantação do Embrião/fisiologia , Blastocisto/metabolismo , Estrogênios/metabolismo , DNA/metabolismo
19.
Gene ; 881: 147626, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37423399

RESUMO

Diapause of the silkworm (Bombyx mori) is an important ecological adaptation strategy regulated by multiple signaling pathways. As an evolutionarily conserved signaling pathway, the insulin/IGF signaling (IIS) pathway is essential in regulating lifespan, energy accumulation, and stress resistance in diapause insects. However, the regulatory mechanism of IIS on diapause in B. mori is still not fully understood. To investigate the role of the IIS pathway in regulating diapause, we first analyzed the transcription levels of the insulin receptor (BmINR) and its downstream gene adenylate cyclase 6 (BmAC6). The diapause-terminated eggs of a bivoltine strain QiuFeng (V2-QF) were incubated at 25 °C in natural room light for preparing diapause egg producers (DEPs) and at 17 °C in total darkness for preparing non-diapause egg producers (NDEPs), respectively. Then we investigated the effects of BmINR and BmAC6 on diapause phenotype and expression of diapause-related genes by RNA interference (RNAi) and overexpression techniques. The results showed that the mRNA expression levels of BmINR and BmAC6 in the head and ovary of NDEPs were higher than those in DEPs during the early and middle pupal stages. Furthermore, when BmINR was knocked down in the NDEPs, approximately 14.43% of eggs were in light red color and subsequently changed into gray-purple color after 48 h post-oviposition, then stayed in a diapause state. On the other hand, overexpression of BmINR or BmAC6 via recombinant baculoviruses did not cause any obvious phenotypic alterations in NDEPs, but it upregulated the expression of genes related to carbohydrate metabolism, which provides energy for embryonic growth and development. Therefore, it can be concluded that BmINR and BmAC6 genes regulate embryonic diapause in bivoltine B. mori.


Assuntos
Bombyx , Animais , Feminino , Insulina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transdução de Sinais , Pupa/genética , Pupa/metabolismo , Óvulo/metabolismo
20.
Biol Open ; 12(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504370

RESUMO

We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.


Assuntos
Células-Tronco Pluripotentes , Proteínas Repressoras , Fator de Transcrição STAT3 , Camundongos , Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA