Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(49): e2209490119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442082

RESUMO

Emissions of fine particulate matter (PM2.5) from human activities have been linked to substantial disease burdens, but evidence regarding how reducing PM2.5 at its sources would improve public health is sparse. We followed a population-based cohort of 2.7 million adults across Canada from 2007 through 2016. For each participant, we estimated annual mean concentrations of PM2.5 and the fractional contributions to PM2.5 from the five leading anthropogenic sources at their residential address using satellite observations in combination with a global atmospheric chemistry transport model. For each source, we estimated the causal effects of six hypothetical interventions on 10-y nonaccidental mortality risk using the parametric g-formula, a structural causal model. We conducted stratified analyses by age, sex, and income. This cohort would have experienced tangible health gains had contributions to PM2.5 from any of the five sources been reduced. Compared with no intervention, a 10% annual reduction in PM2.5 contributions from transportation and power generation, Canada's largest and fifth-largest anthropogenic sources, would have prevented approximately 175 (95%CI: 123-226) and 90 (95%CI: 63-117) deaths per million by 2016, respectively. A more intensive 50% reduction per year in PM2.5 contributions from the two sources would have averted 360 and 185 deaths per million, respectively, by 2016. The potential health benefits were greater among men, older adults, and low-income earners. In Canada, where PM2.5 levels are among the lowest worldwide, reducing PM2.5 contributions from anthropogenic sources by as little as 10% annually would yield meaningful health gains.


Assuntos
Renda , Material Particulado , Masculino , Humanos , Idoso , Causalidade , Canadá/epidemiologia , Meios de Transporte
2.
Environ Res ; 245: 118064, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160965

RESUMO

Volatile organic compounds (VOCs) significantly affect the air quality in aircraft cabins, consequently affecting passenger health and comfort. Although VOC emission sources and their contributions have been studied extensively, the distribution characteristics of VOCs originating from diverse sources within cabins have received limited attention, and the correlation between VOC sources and concentrations in passenger breathing zones remains largely unexplored. To fill this knowledge gap, the concentration field of VOCs was investigated using a computational fluid dynamics model, and the results were experimentally validated in a typical single-aisle aircraft cabin with seven seat rows. The diffusion characteristics of different VOCs emitted by four typical sources in aircraft cabins (floors, human surfaces, seats, and respiratory sources) were analyzed and compared. The distribution of VOCs emitted by different sources was nonuniform and could be classified into two distinct categories. When the emission intensities of all sources were equal, the average concentration of VOCs emitted from the floor source were considerably lower in the passenger breathing zone (4.01 µg/m³) than those emitted from the human surface, seat, and respiratory sources, which exhibited approximately equal concentrations (6.82, 6.90, and 7.29 µg/m³, respectively). The analysis highlighted that the simplified lumped-parameter method could not accurately estimate the exposure concentrations within an aircraft cabin. To address this issue, we propose a correction method based on the emission intensity of each VOC source. This study provides critical insights into the diffusion characteristics of VOCs within aircraft cabins and VOC emissions from various sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluição do Ar/análise , Aeronaves , Pisos e Cobertura de Pisos , Hidrodinâmica , Poluentes Atmosféricos/análise , Monitoramento Ambiental
3.
Environ Res ; 216(Pt 1): 114386, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162470

RESUMO

Volatile organic compound (VOC) emissions have attracted wide attention due to their impacts on atmospheric quality and public health. However, most studies reviewed certain aspects of natural VOCs (NVOCs) or anthropogenic VOCs (AVOCs) rather than comprehensively quantifying the hotspots and evolution trends of AVOCs and NVOCs. We combined the bibliometric method with the evolution tree and Markov chain to identify research focus and uncover the trends in VOC emission sources. This study found that research mainly focused on VOC emission characteristics, effects on air quality and health, and VOC emissions under climate change. More studies concerned on AVOCs than on NVOCs, and AVOC emissions have shifted with a decreasing proportion of transport emissions and an increasing share of solvent utilization in countries with high emissions and publications (China and the USA). Research on AVOCs is imperative to develop efficient and economical abatement techniques specific to solvent sources or BTEX species to mitigate the detrimental effects. Research on NVOCs originating from human sources risen due to their application in medicine, while studies on sources sensitive to climate change grew slowly, including plants, biomass burning, microbes, soil and oceans. Research on the long-term responses of NVOCs derived from various sources to climate warming is warranted to explore the evolution of emissions and the feedback on global climate. It is worthwhile to establish an emission inventory with all kinds of sources, accurate estimation, high spatial and temporal resolution to capture the emission trends in the synergy of industrialization and climate change as well as to simulate the effects on air quality. We review VOC emissions from both anthropogenic and natural sources under climate change and their effects on atmospheric quality and health to point out the research directions for the comprehensive control of global VOCs and mitigation of O3 pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Poluição do Ar/análise , Solventes , China , Monitoramento Ambiental/métodos
4.
Environ Monit Assess ; 195(9): 1127, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650945

RESUMO

Since December 30, 2017, the Seoul Metropolitan Government, Republic of Korea, has been implementing emergency reduction measures (ERMs) restricting the operation of industrial sites, thermal power plants, and vehicles when air quality is expected to deteriorate. ERMs are implemented when the present observed concentration of particulate matter (PM) of aerodynamic diameter less than 2.5 µm (PM2.5) and/or the predicted values for the following day exceed a threshold value. In this study, the effectiveness of ERMs was evaluated for 33 days with and 6 days without ERM implementation but where the PM2.5 concentration exceeded the threshold value, until March 15, 2021. Of the 33 days of ERM implementation, on 7 days it was executed despite the thresholds not being met. The ERM on these days might have been properly executed because the pre-notice and implementation of ERM might have reduced the local emissions of air pollutants. Our major findings are that even on days of ERM implementation, there were marginal reductions in vehicle traffic, thermal power generation, and industrial emissions. Second, the concentrations of PM2.5 and related air pollutants in Seoul were almost unchanged for most ERM implementation episodes. Third, most of the 39 (= 33 + 6) days when the air quality worsened were caused by the transboundary transport of air pollutants from China. In conclusion, it was revealed that the currently executed ERM law is insufficient for effectively reducing PM2.5. To achieve the required reductions, it is necessary to undertake stricter policies in Seoul and its neighboring regions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Seul , Monitoramento Ambiental , República da Coreia
5.
Ecotoxicol Environ Saf ; 238: 113594, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35525118

RESUMO

Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging persistent organic pollutants. Current knowledge on the emissions of Cl/Br- PAHs is far insufficient for source control, much less on their formation mechanisms. In this field study, Cl/Br-PAHs formation mechanisms were proposed from the macro perspective of practical secondary metal smelting industries. We found secondary zinc smelting as a significant source of Cl/Br-PAHs (9553 ng/m3 in stack gas), exceeding concentrations from other metal smelting sources by 1-2 orders of magnitude. Cl/Br-PAH emission characteristics differed between various secondary metal smelting processes, indicating dominance of different formation mechanisms. Cl/Br-PAHs with fewer rings were dominant from secondary zinc smelting and secondary copper smelting. Differently, emissions from secondary aluminum smelting were dominated by congeners with more rings. The differences in congener profiles were attributable to the catalytic effects of metal compounds during smelting activities. Zinc oxide and copper oxide dominantly catalyzed dehydrogenation reactions, contributing to the formation of intermediate radicals and subsequent dimerization to Cl/Br-PAHs with fewer rings. Differently, aluminum oxide induced alkylation reactions and accelerated ring growth, resulting in the formation of Cl-PAHs with more rings. The newly proposed mechanisms can successfully explain the emission characteristics of Cl/Br-PAHs during smelting activities, which should be important implication for Cl/Br-PAHs targeted source control.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Clorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Cobre , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Zinco
6.
Environ Geochem Health ; 44(3): 933-942, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34128154

RESUMO

Coal spontaneous combustion is known to emit a variety of organic carcinogenic pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most prominent. The Wuda coalfield is a coal fire-prone region in northern China. Coal fire sponges (CFS), a sponge-like contaminated soil protrusion, occur widely in the Suhaitu mining area. PAHs concentrations in CFS were measured via GC × GC-TOFMS. The average total PAHs concentration in the central annulus (A) was 17,416 µg kg-1 and ranged from 292 to 218,251 µg kg-1. Moreover, the study exhibited a heavily contaminated level (1000 µg kg-1). Low molecular weight PAHs were dominant, accounting for more than 50% of the total PAHs. Among them, naphthalene (Nap) and phenanthrene (Phe) were the most prominent, and the correlation between Phe and Nap + Phe was highly significant (R2 > 0.9). Our findings indicated that Nap and Phe contents may constitute a novel indicator to identify coal fire emission sources. Cancer risk calculations indicated that all annulus is already at a potential risk stage (10-6-10-4) for child or adults. CFS is not only a coal fire-associated PAH sink but also an atmospheric PAH emission source and, therefore, warrants the attention of local authorities.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Adulto , Criança , China , Carvão Mineral/análise , Monitoramento Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Poluentes do Solo/análise
7.
Environ Res ; 193: 110507, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33245880

RESUMO

Air pollution caused by particulate matter (PM) has become a serious issue, and significant research has focused on managing large stationary emission sources, i.e., the primary sources of PM. Currently, the U.S. Environmental Protection Agency (EPA) Method 201A and ISO 23210 are predominantly employed to measure the PM emissions at large stationary sources. Method 201A is designated as a standard test method in Korea, but it is difficult to measure PM10 and PM2.5 simultaneously owing to the size of the full-set cyclone. In large stationary emission sources, the use of a serial connection of PM10 and PM2.5 cyclones is unsuitable for measurements at conventional sampling ports featuring diameters of approximately 100 mm. Therefore, in this study, PM10 and PM2.5 cyclones were developed to replace the cyclones currently used in Method 201A. The developed cyclones featured a cutoff diameter, which was confirmed by numerical and experimental analyses that were close to Method 201A. Moreover, there was an increase in the stiffness of collection efficiency. The hook adaptor, which is a key accessory used in Method 201A, was found to be applicable to the newly developed cyclones. This alternative method will help reduce the measurement time by simultaneously measuring TSP, PM10, and PM2.5 and eliminates the costs of installing or refurbishing additional sampling ports at existing large stationary sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Tempestades Ciclônicas , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , República da Coreia
8.
J Environ Sci (China) ; 107: 38-48, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412786

RESUMO

Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds (VOCs). In conjunction with epidemiologic studies, water-based paints (WBPs) and solvent-based paints (SBPs) were selected as representatives of newly developed solvents and traditional solvents, respectively, to simulate the effects of consuming solvents emitted during industrial production. And non-carcinogenic and carcinogenic risks to residents near emission sources were studied in detail. The results showed that the spatial distribution of health risks varied with meteorological conditions and type of emission source, and the prevailing wind direction strongly affected the distribution range and shape of the influenced area. The areas of influence maximized on heavy-polluting days for both WBP and SBP emission sources with the total span reaching 804 m and 16 km, respectively; meanwhile, the areas of influence for carcinogenic risk resulting from WBP emission sources were 1.2 and 2.3 times greater than those measured on fine and rainy days, respectively, and 1.8 and 2.9 times greater for SBP emission sources. Compared with WBPs, the total spans of negatively influenced regions resulting from SBP emission sources were 10.4, 12.5 and 19.9 times greater on fine, rainy and heavy-polluting days, respectively. Therefore, carcinogenic risk was the dominant health threat for populations residing close to solvent-consuming industrial emission sources. The findings suggest that newly developed solvents are capable of significantly reducing consequent health threats, nevertheless, they could still pose occasional threats to nearby residents under specific meteorological conditions.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Indústrias , Solventes , Compostos Orgânicos Voláteis/análise
9.
Sci Total Environ ; 923: 171353, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432390

RESUMO

Black carbon (BC) exerts a profound and intricate impact on both air quality and climate due to its high light absorption. However, the uncertainty in representing the absorption enhancement of BC in climate models leads to an increased range in the modeled aerosol climate effects. Changes in BC optical properties could result either from atmospheric aging processes or from variations in its sources. In this study, a source-age model for identifying emission sources and aging states presented by University of California at Davis/California Institute of Technology (UCD/CIT) was used to simulate the atmospheric age distribution of BC from different sources and to quantify its impact on the optical properties of BC-containing particles. The results indicate that regions with greater aged BC concentrations do not correspond to regions with higher BC emissions due to atmospheric transport. High concentrations of aged BC are found in northern Yangtze River Delta (YRD) regions during summer. The chemical compositions of particles from different sources and with different atmospheric ages differ significantly. BC and primary organic aerosols (POA) are dominating in Traffic-dominated source while other components dominate in Industry-dominated source. As the atmospheric age increases, the mass fraction of secondary inorganic aerosols rises. Compared to the original model, the simulated mass absorption cross section of BC particles in the source-age model decreases while the single scattering albedo increases. This compensates for ~11 % of the overestimation of the simulated BC direct radiative forcing. Our study highlights that incorporating atmospheric age and source information into models can greatly improve the estimation of optical properties of BC-containing particles and deepen our understanding of their climate effects.

10.
Sci Total Environ ; 924: 171637, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479528

RESUMO

Wastewater treatment plants (WWTPs) have been regarded as the main sources of greenhouse gas (GHG) emissions. This study compares the influent characteristics of industrial wastewater represented by the WWTP of paper mill and that of domestic sewage represented by the Benchmark Simulation Model No. 1 (BSM1) under stormy weather. The various sources of GHG emissions from the two processes are calculated, and the contribution of each source to the total GHG emissions is assessed. Firstly, based on the mass balance analysis and the recognized emission factors, a GHG emission calculation model was established for the on-site and off-site GHG emission sources from the WWTP of paper mill. Simultaneously, a GHG emission experimental model was established by determining the dissolved concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) in the papermaking wastewater, to verify the accuracy of the developed GHG calculation model. Subsequently, an optimum aeration rate for the paper mill was investigated to comply with the discharging norms. Under the optimum aeration rate of 10 h-1, the obtained calculation accuracies of CO2 and N2O emissions were 94.6 % and 91.1 %, respectively. The mean total GHG emission in the WWTP of paper mill was 550 kg CO2-eq·h-1, of which 44.6 % came from the on-site emission sources and 55.4 % from the off-site emission sources. It was also uncovered that the electrical consumption for aeration was the largest contributor to the total GHG emissions with a proportion of 25.2 %, revealing that the control strategy of the aeration rate is highly significant in reducing GHG emissions in WWTP of paper mills.

11.
NanoImpact ; 33: 100493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219948

RESUMO

The use of modelling tools in the occupational hygiene community has increased in the last years to comply with the different existing regulations. However, limitations still exist mainly due to the difficulty to obtain certain key parameters such as the emission rate, which in the case of powder handling can be estimated using the dustiness index (DI). The goal of this work is to explore the applicability and usability of the DI for emission source characterization and occupational exposure prediction to particles during nanomaterial powder handling. Modelling of occupational exposure concentrations of 13 case scenarios was performed using a two-box model as well as three nano-specific tools (Stoffenmanager nano, NanoSafer and GUIDEnano). The improvement of modelling performance by using a derived handling energy factor (H) was explored. Results show the usability of the DI for emission source characterization and respirable mass exposure modelling of powder handling scenarios of nanomaterials. A clear improvement in modelling outcome was obtained when using derived quartile-3 H factors with, 1) Pearson correlations of 0.88 vs. 0.52 (not using H), and 2) ratio of modelled/measured concentrations ranging from 0.9 to 10 in 75% cases vs. 16.7% of the cases when not using H. Particle number concentrations were generally underpredicted. Using the most conservative H values, predictions with ratios modelled/measured concentrations of 0.4-3.6 were obtained.


Assuntos
Poluentes Ocupacionais do Ar , Nanoestruturas , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Pós , Exposição por Inalação/efeitos adversos , Monitoramento Ambiental/métodos , Nanoestruturas/efeitos adversos
12.
Environ Pollut ; 361: 124843, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39209053

RESUMO

E-waste recycling activities are a crucial emission source of organic pollutants, posing potential risks to the surrounding environment and human health. To understand the potential impact related to diverse e-waste dismantling activities, we investigated two categories of popular flame retardants (i.e., organophosphate esters (OPEs) and chlorinated paraffins (CPs) and their resultant possible ecological risk in 53 surface soil samples from Qingyuan, a well-known e-waste recycling region in South China. Varied concentrations of ΣOPEs (20.5-8720 ng/g) and ΣCPs (920-16800 ng/g) were observed at diverse dismantling sites, while relatively low levels of ΣOPEs (6.13-1240 ng/g) and ΣCPs (14.8-2870 ng/g) were found in surrounding soils. These results indicated that primitive e-waste dismantling processes were the primary emission source of OPEs and CPs in the studied area, with e-waste dumping and manual dismantling being the most important emission sources for OPEs and CPs. More importantly, CPs could be degraded/transformed into more toxic intermediates via dechlorination and decarbonization during the burning of e-waste. Furthermore, our results indicated the potential ecological risks posed by OPEs and CPs related to e-waste recycling.

13.
Microbiol Spectr ; 12(7): e0052024, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38832787

RESUMO

Rice anaerobic fermentation is a significant source of greenhouse gas (GHG) emissions, and in order to efficiently utilize crop residue resources to reduce GHG emissions, rice straw anaerobic fermentation was regulated using lactic acid bacteria (LAB) inoculants (FG1 and TH14), grass medium (GM) to culture LAB, and Acremonim cellulolyticus (AC). Microbial community, GHG emission, dry matter (DM) loss, and anaerobic fermentation were analyzed using PacBio single-molecule real-time and anaerobic fermentation system. The epiphytic microbial diversity of fresh rice straw was extremely rich and contained certain nutrients and minerals. During ensiling, large amounts of GHG such as carbon dioxide are produced due to plant respiration, enzymatic hydrolysis reactions, and proliferation of aerobic bacteria, resulting in energy and DM loss. Addition of FG1, TH14, and AC alone improved anaerobic fermentation by decreasing pH and ammonia nitrogen content (P < 0.05) and increased lactic acid content (P < 0.05) when compared to the control, and GM showed the same additive effect as LAB inoculants. Microbial additives formed a co-occurrence microbial network system dominated by LAB, enhanced the biosynthesis of secondary metabolites, diversified the microbial metabolic environment and carbohydrate metabolic pathways, weakened the amino acid metabolic pathways, and made the anaerobic fermentation cleaner. This study is of great significance for the effective utilization of crop straw resources, the promotion of sustainable livestock production, and the reduction of GHG emissions.IMPORTANCETo effectively utilize crop by-product resources, we applied microbial additives to silage fermentation of fresh rice straw. Fresh rice straw is extremely rich in microbial diversity, which was significantly reduced after silage fermentation, and its nutrients were well preserved. Silage fermentation was improved by microbial additives, where the combination of cellulase and lactic acid bacteria acted as enzyme-bacteria synergists to promote lactic acid fermentation and inhibit the proliferation of harmful bacteria, such as protein degradation and gas production, thereby reducing GHG emissions and DM losses. The microbial additives accelerated the formation of a symbiotic microbial network system dominated by lactic acid bacteria, which regulated silage fermentation and improved microbial metabolic pathways for carbohydrates and amino acids, as well as biosynthesis of secondary metabolites.


Assuntos
Fermentação , Gases de Efeito Estufa , Oryza , Oryza/microbiologia , Oryza/metabolismo , Gases de Efeito Estufa/metabolismo , Anaerobiose , Produtos Agrícolas/microbiologia , Produtos Agrícolas/metabolismo , Lactobacillales/metabolismo , Microbiota/fisiologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Silagem/microbiologia
14.
Environ Pollut ; 349: 123926, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580059

RESUMO

Ammonia (NH3) is attracting attention as a carbon-free energy source and a significant precursor to inorganic PM2.5 (hereafter PM2.5), aside from NOx and SOx. Since the emission of NH3 has often been overlooked compared to NOx and SOx, this study aims to reveal the role of NH3 and its emission control on PM2.5 in Kanto, Japan. With the aid of gas ratio (GR) quantitatively defining the stoichiometry between the three precursors to PM2.5, and the aid of atmospheric modeling software ADMER-PRO, coupled with thermodynamics calculations, the spatiotemporal distribution along with PM2.5 reduction under different NH3 emission cutoff strategies in Kanto had been revealed for the first time. The cutoff of NH3 emission could effectively reduce the PM2.5 concentration, with sources originated from agriculture, human/pet activities, and vehicle sources, overall giving a 93.32% PM2.5 reduction. Different cutoff strategies lead to distinct reduction efficiencies of the overall and local PM2.5 concentrations, with GR as a crucial factor. The regions with GR ∼1, are sensitive to the NH3 concentration for forming PM2.5, at which the NH3 reduction strategies should be applied with high priority. On the other hand, installing a new NH3 emission source should be avoided in the region with GR < 1, suppressing the so-yielded PM2.5 pollution. The future PM2.5 pollution control related to the NH3 emission control strategies based on GR, which is stoichiometry-based and applicable to regions other than Kanto, has been discussed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Amônia , Monitoramento Ambiental , Material Particulado , Amônia/análise , Japão , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos
15.
Sci Total Environ ; 903: 166352, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598962

RESUMO

The occurrence of 25 multi-class pollutants comprising phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and synthetic musks (SMs) were studied in PM2.5 samples collected at an industrial/commercial/residential/traffic mixed area in Shanghai during four seasons. During the whole period, a slight exceedance of the PM2.5 annual limit was observed, with an average of 36.8 µg/m3, and PAEs were the most predominant, accounting for >70 % of the studied organic pollutants in PM2.5, followed by PAHs and SMs. Statistically significant differences were observed for the concentrations of PM2.5, PAEs, PAHs, and SMs in winter and summer. This seasonal variation could be derived from anthropogenic activities and atmospheric dynamics. Principal component analysis (PCA) and PAHs ratios suggested a mixed source mainly derived from vehicle emissions and industrial processes. Moreover, gaseous pollutants were also accounted for, indicating the emission of PAHs might accompany the NO2 emission process. Finally, inhalation of PM2.5-bound organic pollutants for carcinogenic and non-carcinogenic risks were estimated as average values for each season, showing outside the safe levels in autumn and winter in some cases, suggesting that new policies should be to developed to reduce their emissions and protect human health in this area.

16.
Sci Total Environ ; 869: 161817, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708842

RESUMO

The emission and environmental impact of condensable particulate matter (CPM) from coal-fired power plants (CFPPs) are of increasing concern worldwide. Many studies on the characteristics of CPM emission have been conducted in China, but its source profile remains unclear, and its emission inventory remains high uncertainty. In this work, the latest measurements reported in the latest 33 studies for CPM inorganic and organic species emitted from CFPPs in China were summarized, and then a compositional source profile of CPM for CFPPs was developed for the first time in China, which involved 10 inorganic species and 71 organic species. In addition, the CPM emission inventory of CFPPs in Yantai of China was developed based on surveyed activity data, continuous emission monitoring system (CEMS), and the latest measurement data. The results show that: (1) Inorganic species accounted for 77.64 % of CPM emitted from CFPPs in Yantai, among which SO42- had the highest content, accounting for 23.74 % of CPM, followed by Cl-, accounting for 11.95 %; (2) Organic matter accounted for 22.36 % of CPM, among which alkanes accounted for the largest proportion of organic fraction (72.7 %); (3) Emission concentration method (EC) and CEMS-based emission ratio method (ERFPM,CEMS) were recommended to estimate CPM emissions for CFPPs; (4) The estimated CPM emission inventories of Yantai CFPPs in 2020 by the EC method and the ERFPM,CEMS method were 1231 tons and 929 tons, respectively, with uncertainties of -34 % ∼ 33 % and -27 % ∼ 57 %, respectively; (5) CPM emissions were mainly distributed in the northern coastal areas of Yantai. This developed CPM source profile and emission inventory can provide basic data for assessing the impacts of CPM on air quality and health. In addition, this study can provide an important methodology for developing CPM emission inventories and CPM emission source profiles for stationary combustion sources in other regions.

17.
Sci Total Environ ; 862: 160771, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513240

RESUMO

Reactive oxygen species (ROS) play a central role in health effects of ambient fine particulate matter (PM2.5). In this work, we screened for efficient and complementary oxidative potential (OP) measurements by comparing the response values of multiple chemical probes (OPDTT, OPOH, OPGSH) to ambient PM2.5 in Shenzhen, China. Combined with meteorological condition and PM2.5 chemical composition analysis, we explored the effects of different chemical components and emission sources on the ambient PM2.5 OP and analyzed their seasonal variations. The results show that OPmDTT(mass-normalized) and OPmGSH-SLF were highly correlated (r = 0.77). OPDTT was mainly influenced by organic carbon, while OPOH was highly dominated by heavy metals. The combination of OPDTT and OPOH provides an efficient and comprehensive measurement of OP. Temporally, the OPs were substantially higher in winter than in summer (1.4 and 4 times higher for OPmDTT and OPmOH, respectively). The long-distance transported biomass burning sources from the north dominated the OPDTT in winter, while the ship emissions mainly influenced the summer OP. The OPmDTT increased sharply with the decrease of PM2.5 mass concentration, especially when the PM2.5 concentration was lower than 30 µg/m3. The huge differences in wind fields between the winter and summer cause considerable variations in PM2.5 concentrations, components, and OP. Our work emphasizes the necessity of long-term, multi-method, multi-component assessment of the OP of PM2.5.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental/métodos , Material Particulado/análise , China , Estresse Oxidativo
18.
Sci Total Environ ; 865: 161239, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587665

RESUMO

Nowadays, the emission source and formation mechanism of fine particulate nitrate (pNO3-) in China are mired in controversy. In this study, the stable nitrogen isotope (δ15N-NO3-) and triple oxygen isotope (Δ17O-NO3-) were determined for the pNO3- samples collected at three heights under different atmospheric oxidation capacity (AOC) (Ox = O3 + NO2: 107 ± 29 µg m-3 at ground, 102 ± 28 µg m-3 at 118 m, 122 ± 23 µg m-3 at 488 m) conditions during the sampling period based on the Canton Tower, Guangzhou, China. The Bayesian mixing model showed that coal combustion was the largest contributor to pNO3- in this city, followed by biomass burning, vehicle exhaust, and soil emission. Interestingly, we found that vertical NOx and pNO3- concentrations displayed an opposite pattern owing to the different formation mechanisms among heights. The average contributions of oxidation pathways for (NO2 + OH, P1), (NO3 + DMS/HC, P2), and (N2O5 + H2O, P3) were 61 %, 12 %, and 27 % at the ground, respectively, and these values would vary greatly among heights. These results implied that both AOC and NOx loading played an important role in pNO3- production. The pNO3- displayed a positive correlation with NOx (r = 0.95) with an enhanced contribution of the P1 pathway under the relatively high AOC condition. However, pNO3- has a negative correlation with NOx (r = -0.99) with a rise of heterogeneous reaction (P2 and P3) under the relatively low AOC condition. Therefore, the current emission control strategy for air pollution in China needs to consider the AOC conditions among regions to effectively mitigate particulate air pollution.

19.
Heliyon ; 9(3): e14261, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938473

RESUMO

Many of the current atmospheric environmental problems facing Thailand are linked to air pollution that is largely derived from biomass burning. Different parts of Thailand have distinctive sources of biomass emissions that affect air quality. The main contributors to atmospheric particulate matter (PM), especially the PM2.5 fraction in Thailand, were highlighted in a recent study of PM derived from biomass burning. This review is divided into six sections. Section one is an introduction to biomass burning in Thailand. Section two covers issues related to biomass burning for each of the four main regions in Thailand, including Northern, Northeastern, Central, and Southern Thailand. In northern Thailand, forest fires and the burning of crop residues have contributed to air quality in the past decade. The northeast region is mainly affected by the burning of agricultural residues. However, the main contributor to PM in the Bangkok Metropolitan Region is motor vehicles and crop burning. In Southern Thailand, the impact of agoindustries, biomass combustion, and possible agricultural residue burning are the primary sources, and cross-border pollution is also important. The third section concerns the effect of biomass burning on human health. Finally, perspectives, new challenges, and policy recommendations are made concerning improving air quality in Thailand, e.g., forest fuel management and biomass utilization. The overall conclusions point to issues that will have a long-term impact on achieving a blue sky over Thailand through the development of coherent policies and the management of air pollution and sharing this knowledge with a broader audience.

20.
ISA Trans ; 134: 573-587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36163198

RESUMO

Emission source microscopy (ESM) technique can be utilized for localization of electromagnetic interference sources in the electronic systems, but its accuracy is limited by the typical planar scanning mode. In order to increase the accuracy, this paper presents a novel cylinder-aperture ESM measurement system driven by 6-DOF manipulator, and investigated the control strategy to generate the maximum-area aperture and optimized scanning trajectory. Based on the multiple constraints of the cylinder-aperture ESM measurement, we proposes analyzing the impact of the constraints by steps. This can obtain the analytical solution of the manipulator workspace and support solving the maximum aperture area. Besides, a modified RRT*(Rapidly-exploring Random Trees) algorithm is addressed to optimize the manipulator trajectory. The simulation and tests have proven that this algorithm could obviously reduce the joint mutation and cumulative tracking error. In the experimental section, the near-field scanning (NFS) tests, planar-aperture ESM measurement and proposed cylinder-aperture ESM measurement were conducted to measure one benchmark emission source. The results have demonstrated that the cylinder-aperture ESM measurement has the best convergences on the radiation pattern of the emission source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA