Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 112022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394256

RESUMO

Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9 bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9 bp deletion' when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described 'elimination of paternal mitochondria during fertilisation.


Assuntos
Genoma Mitocondrial , Humanos , Animais , Endodesoxirribonucleases , Mitocôndrias/genética , Instabilidade Genômica , DNA Mitocondrial/genética , Mamíferos
2.
In Vivo ; 31(6): 1103-1114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29102932

RESUMO

BACKGROUND/AIM: Oral cancer has been reported to be one of the major cancer-related diseases in human populations and the treatment of oral cancer is still unsatisfied. Fisetin, is a flavonoid from plants and has several biological activities such as antioxidant, anti-inflammatory and anticancer function, but its cytotoxicity in human oral cancer cells is unknown. In the present study, we investigated fisetin-induced cytotoxic effects on HSC3 human oral cancer cells in vitro. Materials and Methods/Results: We used flow cytometric assay to show fisetin induced apoptotic cell death through increased reactive oxygen species and Ca2+, but reduced the mitochondrial membrane potential and increased caspase-8, -9 and -3 activities in HSC3 cells. Furthermore, we also used 4' 6-diamidino-2-phenylindole staining to show that fisetin induced chromatin condensation (apoptotic cell death), and Comet assay to show that fisetin induced DNA damage in HSC3 cells. Western blotting was used to examine the levels of apoptotic-associated protein and results indicated that fisetin increased expression of pro-apoptotic proteins such as B-cell lymphoma 2 (BCL2) antagonist/killer (BAK) and BCL2-associated X (BAX) but reduced that of anti-apoptotic protein such as BCL2 and BCL-x, and increased the cleaved forms of caspase-3, -8 and -9, and cytochrome c, apoptosis-inducing factor (AIF) and endonuclease G (ENDO G) in HSC3 cells. Confocal microscopy showed that fisetin increased the release of cytochrome c, AIF and ENDO G from mitochondria into the cytoplasm. CONCLUSION: Based on these observations, we suggest that fisetin induces apoptotic cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.


Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Caspases/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Flavonóis , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas de Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Toxicol Rep ; 1: 569-581, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28962270

RESUMO

Diabetic complications cause noticeable liver damage, which finally progresses to diabetic hepatopathy. Nutritive antioxidants not only reduce the liver damage, but also prevent it by modulating the release of various proteins involved in apoptotic signaling cascades. This study explores the molecular mechanisms underlying diabetes-induced liver damage and its modulation by naringenin. Antioxidant status, liver & kidney biomarker enzymes, reactive oxygen species (ROS) generation, mitochondrial membrane potential, expression of apoptotic proteins like Bax (bcl-2 associated X), Bcl-2 (b-cell Lymhoma-2), Caspase-3, Caspase-9, AIF (Apoptosis inducing factor) and Endo-G (Endonuclease-G) were studied in streptozotocin induced diabetic rats. Significant hyperglycemia, disturbed antioxidant status, altered carbohydrate metabolizing enzymes, increased ROS and lipid peroxidation; decreased mitochondrial membrane potential and enhanced release of AIF and Endo-G were observed. Hyperglycemia also affected apoptosis and its related genes at both transcriptional and translational level (Caspase-3 & 9, Bax and Bcl-2) in the liver of diabetic rats. Naringenin, a flavonone, exerted anti-hyperglycemic effect and was able to prevent oxidative stress and resultant apoptotic events caused due to diabetes-induced hepatotoxicity. Thus, our study shows, a protective effect of naringenin against diabetes induced liver damage and redox imbalance, which could further be exploited for the management of diabetic hepatopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA