Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.060
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 187-209, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35914767

RESUMO

Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.


Assuntos
Canabinoides , Humanos , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides
2.
J Cell Sci ; 137(11)2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864427

RESUMO

Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.


Assuntos
Axônios , Ligação Proteica , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Axônios/metabolismo , Ratos , Domínios Proteicos , Humanos , Células Cultivadas , Neurônios/metabolismo , Ratos Sprague-Dawley , Membrana Celular/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34401955

RESUMO

The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.


Assuntos
Canabinoides , Endocanabinoides , Animais , Caenorhabditis elegans/metabolismo , Receptores de Canabinoides/metabolismo , Mamíferos/metabolismo
4.
Exp Cell Res ; 435(1): 113908, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163565

RESUMO

The endocannabinoid anandamide (AEA) stimulates adipogenesis via the cannabinoid receptor CB1 in adipose stromal cells (ASCs). However, AEA interacts also with nonclassical cannabinoid receptors, including transient receptor potential cation channel (TRPV)1 and G protein-coupled receptor (GPR)55. Their roles in AEA mediated adipogenesis of human ASCs have not been investigated. We examined the receptor-expressions by immunostaining on human ASCs and tested their functionality by measuring the expression of immediate early genes (IEGs) related to the transcription factor-complex AP-1 upon exposition to receptor agonists. Cells were stimulated with increasing concentrations of specific ligands to investigate the effects on ASC viability (proliferation and metabolic activity), secretory activity, and AEA mediated differentiation. ASCs expressed both receptors, and their activation suppressed IEG expression. TRPV1 did not affect viability or cytokine secretion. GPR55 decreased proliferation, and it inhibited the release of hepatocyte growth factor. Blocking GPR55 increased the pro-adipogenic activity of AEA. These data suggest that GPR55 functions as negative regulator of cannabinoid mediated pro-adipogenic capacity in ASCs.


Assuntos
Adipogenia , Ácidos Araquidônicos , Endocanabinoides , Humanos , Endocanabinoides/farmacologia , Receptores de Canabinoides , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Células Estromais/metabolismo
5.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406827

RESUMO

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Assuntos
Canabidiol , Neoplasias , Humanos , Cisplatino/toxicidade , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Caquexia/metabolismo , Catalase/metabolismo , Qualidade de Vida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
6.
Infect Immun ; 92(6): e0002024, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38775488

RESUMO

The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.


Assuntos
Infecções Bacterianas , Canabinoides , Endocanabinoides , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Endocanabinoides/metabolismo , Humanos , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Canabinoides/metabolismo , Canabinoides/farmacologia
7.
Glia ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132860

RESUMO

Acute gastrointestinal (GI) inflammation induces neuroplasticity that produces long-lasting changes in gut motor function and pain. The endocannabinoid system is an attractive target to correct pain and dysmotility, but how inflammation changes endocannabinoid control over cellular communication in enteric neurocircuits is not understood. Enteric glia modulate gut neurons that control motility and pain and express monoacylglycerol lipase (MAGL) which controls endocannabinoid availability. We used a combination of in situ calcium imaging, chemogenetics, and selective drugs to study how endocannabinoid mechanisms affect glial responses and subsequent enteric neuron activity in health and following colitis in Wnt1Cre;GCaMP5g-tdT;GFAP::hM3Dq mice. Trpv1Cre;GCaMP5gtdT mice were used to study nociceptor sensitivity and Sox10CreERT2;Mgllf/f mice were used to test the role of glial MAGL in visceral pain. The data show that endocannabinoid signaling regulates neuro-glial signaling in gut neurocircuits in a sexually dimorphic manner. Inhibiting MAGL in healthy samples decreased glial responsiveness but this effect was lost in females following colitis and converted to an excitatory effect in males. Manipulating CB1 and CB2 receptors revealed further sex differences amongst neuro-glia signaling that were impacted following inflammation. Inflammation increased gut nociceptor sensitivity in both sexes but only females exhibited visceral hypersensitivity in vivo. Blocking MAGL normalized nociceptor responses in vitro and deleting glial Mgll in vivo rescued visceral hypersensitivity in females. These results show that sex and inflammation impact endocannabinoid mechanisms that regulate intercellular enteric glia-neuron communication. Further, targeting glial MAGL could provide therapeutic benefits for visceral nociception in a sex-dependent manner.

8.
Curr Issues Mol Biol ; 46(7): 6868-6884, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057052

RESUMO

The onset of neurodegenerative diseases involves a complex interplay of pathological mechanisms, including protein aggregation, oxidative stress, and impaired autophagy. This review focuses on the intricate connection between oxidative stress and autophagy in neurodegenerative disorders, highlighting autophagy as pivotal in disease pathogenesis. Reactive oxygen species (ROS) play dual roles in cellular homeostasis and autophagy regulation, with disruptions of redox signaling contributing to neurodegeneration. The activation of the Nrf2 pathway represents a critical antioxidant mechanism, while autophagy maintains cellular homeostasis by degrading altered cell components. The interaction among p62/SQSTM1, Nrf2, and Keap1 forms a regulatory pathway essential for cellular stress response, whose dysregulation leads to impaired autophagy and aggregate accumulation. Targeting the Nrf2-p62/SQSTM1 pathway holds promise for therapeutic intervention, mitigating oxidative stress and preserving cellular functions. Additionally, this review explores the potential synergy between the endocannabinoid system and Nrf2 signaling for neuroprotection. Further research is needed to elucidate the involved molecular mechanisms and develop effective therapeutic strategies against neurodegeneration.

9.
Curr Issues Mol Biol ; 46(5): 4379-4402, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38785534

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol (CBD) are being increasingly investigated for their ability to provide antioxidant and anti-inflammatory neuroprotection. CBD is the primary non-psychotropic phytocannabinoid derived from Cannabis sativa. It has been found to provide beneficial outcomes in a variety of medical conditions and is gaining increasing attention for its potential therapeutic application in AD. CBD is not psychoactive and its lipophilic nature allows its rapid distribution throughout the body, including across the blood-brain barrier (BBB). CBD also possesses anti-inflammatory, antioxidant, and neuroprotective properties, making it a viable candidate for AD treatment. This review outlines CBD's mechanism of action, the role of oxidative stress and neuroinflammation in AD, and the effectiveness and limitations of CBD in preclinical models of AD.

10.
Eur J Neurosci ; 59(12): 3337-3352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654472

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.


Assuntos
Comportamento Animal , Canabidiol , Síndromes Epilépticas , Proteínas Serina-Treonina Quinases , Convulsões , Animais , Masculino , Camundongos , Comportamento Animal/efeitos dos fármacos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/genética , Síndromes Epilépticas/fisiopatologia , Técnicas de Introdução de Genes/métodos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pentilenotetrazol , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides , Convulsões/tratamento farmacológico , Convulsões/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
Biochem Biophys Res Commun ; 719: 150081, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744071

RESUMO

Renin-Angiotensin System (RAS) is a peptidergic system, canonically known for its role in blood pressure regulation. Furthermore, a non-canonical RAS regulates pathophysiological phenomena, such as inflammation since it consists of two main axes: the pro-inflammatory renin/(pro)renin receptor ((P)RR) axis, and the anti-inflammatory angiotensin-converting enzyme 2 (ACE2)/Angiotensin-(1-7) (Ang-(1-7))/Mas Receptor (MasR) axis. Few phytochemicals have shown to exert angiotensinergic and anti-inflammatory effects through some of these axes; nevertheless, anti-inflammatory drugs, such as phytocannabinoids have not been studied regarding this subject. Among phytocannabinoids, ß-Caryophyllene stands out as a dietary phytocannabinoid with antiphlogistic activity that possess a unique sesquiterpenoid structure. Although its cannabinergic effect has been studied, its angiotensinergic effect reminds underexplored. This study aims to explore the angiotensinergic effect of ß-Caryophyllene on inflammation and stress at a systemic level. After intranasal Lipopolysaccharide (LPS) installation and oral treatment with ß-Caryophyllene, the concentration and activity of key RAS elements in the serum, such as Renin, ACE2 and Ang-(1-7), along with the stress hormone corticosterone and pro/anti-inflammatory cytokines, were measured in mice serum. The results show that ß-Caryophyllene treatment modified RAS levels by increasing Renin and Ang-(1-7), alongside the reduction of pro-inflammatory cytokines and corticosterone levels. These results indicate that ß-Caryophyllene exhibits angiotensinergic activity in favor of anti-inflammation.


Assuntos
Angiotensina I , Inflamação , Lipopolissacarídeos , Sesquiterpenos Policíclicos , Sistema Renina-Angiotensina , Animais , Sesquiterpenos Policíclicos/farmacologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Masculino , Camundongos , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina I/metabolismo , Sesquiterpenos/farmacologia , Anti-Inflamatórios/farmacologia , Fragmentos de Peptídeos/metabolismo
12.
J Neuroinflammation ; 21(1): 206, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160534

RESUMO

Since its detection in the brain, the cannabinoid receptor type 2 (CB2) has been considered a promising therapeutic target for various neurological and psychiatric disorders. However, precise brain mapping of its expression is still lacking. Using magnetic cell sorting, calibrated RT-qPCR and single-nucleus RNAseq, we show that CB2 is expressed at a low level in all brain regions studied, mainly by few microglial cells, and by neurons in an even lower proportion. Upon lipopolysaccharide stimulation, modeling neuroinflammation in non-sterile conditions, we demonstrate that the inflammatory response is associated with a transient reduction in CB2 mRNA levels in brain tissue, particularly in microglial cells. This result, confirmed in the BV2 microglial cell line, contrasts with the positive correlation observed between CB2 mRNA levels and the inflammatory response upon stimulation by interferon-gamma, modeling neuroinflammation in sterile condition. Discrete brain CB2 expression might thus be up- or down-regulated depending on the inflammatory context.


Assuntos
Encéfalo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia , Receptor CB2 de Canabinoide , Animais , Microglia/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/biossíntese , Camundongos , Encéfalo/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Doenças Neuroinflamatórias/metabolismo
13.
Chembiochem ; 25(19): e202400397, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958639

RESUMO

The involvement of academic research in drug discovery is consistently growing. However, academic projects seldom advance to clinical trials. Here, we assess the landscape of drug discovery within the National Centre of Competence in Research (NCCR) TransCure launched by the Swiss National Science Foundation to foster basic research and early-stage drug discovery on membrane transporters. This included transporters in central nervous system (CNS) disorders, which represent a huge unmet medical need. While idea championship, sustainable funding, collaborations between disciplines at the interface of academia and industry are important for translational research, Popperian falsifiability, strong intellectual property and a motivated startup team are key elements for innovation. This is exemplified by the NCCR TransCure spin-off company Synendos Therapeutics, a clinical stage biotech company developing the first selective endocannabinoid reuptake inhibitors (SERIs) as novel treatment for neuropsychiatric disorders. We provide a perspective on the challenges related to entering an uncharted druggable space and bridging the often mentioned "valley of death". The high attrition rate of drug discovery projects in the CNS field within academia is often due to the lack of meaningful animal models that can provide pharmacological proof-of-concept for potentially disruptive technologies at the earliest stages, and the absence of solid intellectual property.


Assuntos
Descoberta de Drogas , Humanos , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/farmacologia , Fármacos do Sistema Nervoso Central/uso terapêutico , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Academia
14.
J Med Virol ; 96(4): e29590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619024

RESUMO

Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , Doença de Alzheimer/genética , Encéfalo , Análise por Conglomerados , COVID-19/genética , Endocanabinoides , Proteínas dos Microfilamentos , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina
15.
Brain Behav Immun ; 119: 301-316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608740

RESUMO

Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes. Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.


Assuntos
Ansiedade , Comportamento Animal , Canabidiol , Hipocampo , Obesidade Materna , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Animais , Feminino , Canabidiol/farmacologia , Gravidez , Ratos , Masculino , Obesidade Materna/metabolismo , Ansiedade/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Comportamento Social , Obesidade/metabolismo , Endocanabinoides/metabolismo
16.
Neurochem Res ; 49(5): 1278-1290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368587

RESUMO

Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.


Assuntos
Amidoidrolases , Endocanabinoides , Lisina , Receptor CB1 de Canabinoide , Isolamento Social , Animais , Ratos , Amidoidrolases/genética , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides/metabolismo
17.
Neurochem Res ; 49(8): 2165-2178, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824460

RESUMO

Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and ß-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Hipocampo , Receptor CB1 de Canabinoide , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Ritmo Circadiano/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Hipocampo/metabolismo , Fígado/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/metabolismo , Traumatismo por Reperfusão/metabolismo
18.
Expert Opin Emerg Drugs ; 29(1): 65-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226593

RESUMO

INTRODUCTION: Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 3% of school-age children. The core symptoms are deficits in social communication and restricted and repetitive patterns of behavior. Associated problems in cognition, language, behavior, sleep and mood are prevalent. Currently, no established pharmacological treatment exists for core ASD symptoms. Risperidone and aripiprazole are used to manage associated irritability, but their effectiveness is limited and adverse events are common. AREAS COVERED: This mini-review summarizes existing scientific literature and ongoing clinical trials concerning cannabinoid treatment for ASD. Uncontrolled case series have documented improvements in both core ASD symptoms and related behavioral challenges in children treated with cannabis extracts rich in cannabidiol (CBD). Placebo-controlled studies involving CBD-rich cannabis extracts and/or pure CBD in children with ASD have demonstrated mixed efficacy results. A similar outcome was observed in a placebo-controlled study of pure CBD addressing social avoidance in Fragile X syndrome. Importantly, these studies have shown relatively high safety and tolerability. EXPERT OPINION: While current clinical data suggest the potential of CBD and CBD-rich cannabis extract in managing core and behavioral deficits in ASD, it is prudent to await the results of ongoing placebo-controlled trials before considering CBD treatment for ASD.


Assuntos
Transtorno do Espectro Autista , Canabinoides , Criança , Humanos , Aripiprazol/efeitos adversos , Transtorno do Espectro Autista/tratamento farmacológico , Canabidiol/uso terapêutico , Canabinoides/uso terapêutico , Humor Irritável , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Brain ; 146(9): 3851-3865, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222214

RESUMO

Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.


Assuntos
RNA Longo não Codificante , Humanos , Dor/genética , Analgésicos , Gânglios Espinais
20.
Eur J Nutr ; 63(5): 1565-1579, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38727803

RESUMO

PURPOSE: Maternal high-fat diet (HF) programs obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), hypertriglyceridemia, and hyperglycemia associated with increased endocannabinoid system (ECS) in the liver of adult male rat offspring. We hypothesized that maternal HF would induce sex specific ECS changes in the liver of newborn rats, prior to obesity onset, and maternal fish oil (FO) supplementation would reprogram the ECS and lipid metabolism markers preventing liver triglycerides (TG) accumulation. METHODS: Female rats received a control (CT) (10.9% fat) or HF (28.7% fat) diet 8 weeks prior to mating and during pregnancy. A subgroup of HF dams received 3% FO supplementation in the HF diet (35.4% fat) during pregnancy (HFFO). Serum hormones and liver TG, ECS, lipid metabolism, oxidative stress and autophagy markers were assessed in male and female newborn offspring. RESULTS: Maternal HF diet increased liver cannabinoid receptor 1 (CB1) in males and decreased CB2 in females, with no effect on liver TG. Maternal FO supplementation reduced liver CB1 regardless of the offspring sex, but reduced TG liver content only in females. FO reduced the liver content of the endocannabinoid anandamide in males, and the content of 2-arachidonoylglycerol in both sexes. Maternal HF increased lipogenic and decreased lipid oxidation markers, and FO induced the opposite regulation in the liver of offspring. CONCLUSION: Prenatal HF and FO differentially modulate liver ECS in the offspring before obesity and MASLD development. These results suggest that maternal nutrition at critical stages of development can modulate the offspring's ECS, predisposing or preventing the onset of metabolic diseases.


Assuntos
Animais Recém-Nascidos , Dieta Hiperlipídica , Suplementos Nutricionais , Endocanabinoides , Óleos de Peixe , Lipogênese , Fígado , Fenômenos Fisiológicos da Nutrição Materna , Animais , Feminino , Gravidez , Óleos de Peixe/farmacologia , Óleos de Peixe/administração & dosagem , Endocanabinoides/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ratos , Masculino , Lipogênese/efeitos dos fármacos , Biomarcadores/sangue , Biomarcadores/metabolismo , Ratos Wistar , Efeitos Tardios da Exposição Pré-Natal , Metabolismo dos Lipídeos/efeitos dos fármacos , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA