Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Genes Dev ; 35(7-8): 449-469, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861720

RESUMO

Our cells are comprised of billions of proteins, lipids, and other small molecules packed into their respective subcellular organelles, with the daunting task of maintaining cellular homeostasis over a lifetime. However, it is becoming increasingly evident that organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication through membrane contacts. In the last few years, our understanding of how these contacts coordinate organelle function has redefined our view of the cell. This review aims to present novel findings on the cellular interorganelle communication network and how its dysfunction may contribute to aging and neurodegeneration. The consequences of disturbed interorganellar communication are intimately linked with age-related pathologies. Given that both aging and neurodegenerative diseases are characterized by the concomitant failure of multiple cellular pathways, coordination of organelle communication and function could represent an emerging regulatory mechanism critical for long-term cellular homeostasis. We anticipate that defining the relationships between interorganelle communication, aging, and neurodegeneration will open new avenues for therapeutics.


Assuntos
Senescência Celular , Doenças Neurodegenerativas/fisiopatologia , Organelas/patologia , Animais , Humanos , Doenças Neurodegenerativas/terapia , Organelas/fisiologia , Transdução de Sinais
2.
Traffic ; 25(7): e12952, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073202

RESUMO

SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Lisossomos , Transporte Proteico , Nexinas de Classificação , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Receptores ErbB/metabolismo , Lisossomos/metabolismo , Humanos , Transporte Proteico/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Células HeLa , Endossomos/metabolismo , Rede trans-Golgi/metabolismo , Corpos Multivesiculares/metabolismo
3.
Immunol Rev ; 307(1): 66-78, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040152

RESUMO

The recognition of pathogen-associated nucleic acid (NA) promotes effective immunity against invading pathogens. However, endosomal Toll-like receptor (TLR) activation by self-NA also underlies the pathogenesis of systemic autoimmune diseases, such as systemic lupus erythematosus (SLE). For this reason, the activation thresholds of NA-sensing TLRs must be tightly regulated to balance protective and pathogenic immune responses. In this study, we will provide an overview of the evolutionary mechanisms designed to limit the aberrant activation of endosomal TLRs by self-ligands, focusing on four broad strategies. These include the following: 1) the production of nucleases able to degrade self-DNA and RNA; 2) the cell-specific regulation of endosomal TLR expression; 3) the spatial and temporal control of TLR positioning at a sub-cellular level; and 4) the modulation of downstream TLR signaling cascades. Given the critical role of B cells in lupus pathogenesis, where possible, we will describe evidence for B cell-specific induction of these regulatory mechanisms. We will also highlight our own work showing how modulation of B cell endolysosomal flux tunes NA-sensing TLR activation signals. In the face of inevitable generation of self-NA during normal cellular turnover, these parallel mechanisms are vital to protect against pathogenic inflammation.


Assuntos
Linfócitos B , Receptores Toll-Like , Linfócitos B/imunologia , Endossomos/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Transdução de Sinais , Receptores Toll-Like/metabolismo
4.
Traffic ; 24(8): 334-354, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218497

RESUMO

Previously, we found that age-dependent accumulation of beta-amyloid is not sufficient to cause synaptic decline. Late-endocytic organelles (LEOs) may be driving synaptic decline as lysosomes (Lys) are a target of cellular aging and relevant for synapses. We found that LAMP1-positive LEOs increased in size and number and accumulated near synapses in aged neurons and brains. LEOs' distal accumulation might relate to the increased anterograde movement in aged neurons. Dissecting the LEOs, we found that late-endosomes accumulated while there are fewer terminal Lys in aged neurites, but not in the cell body. The most abundant LEOs were degradative Lys or endolysosomes (ELys), especially in neurites. ELys activity was reduced because of acidification defects, supported by the reduction in v-ATPase subunit V0a1 with aging. Increasing the acidification of aged ELys recovered degradation and reverted synaptic decline, while alkalinization or v-ATPase inhibition, mimicked age-dependent Lys and synapse dysfunction. We identify ELys deacidification as a neuronal mechanism of age-dependent synapse loss. Our findings suggest that future therapeutic strategies to address endolysosomal defects might be able to delay age-related synaptic decline.


Assuntos
Neurônios , Sinapses , Neurônios/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Adenosina Trifosfatases/metabolismo
5.
Rev Physiol Biochem Pharmacol ; 185: 233-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33649992

RESUMO

Epithelial cells that line the proximal tubule of the kidney rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients. To function effectively and to achieve homeostasis, these specialized cells require the sorting and recycling of a wide array of cell surface proteins within the endolysosomal network, including signaling receptors, nutrient transporters, ion channels, and polarity markers. The dysregulation of the endolysosomal system can lead to a generalized proximal tubule dysfunction, ultimately causing severe metabolic complications and kidney disease.In this chapter, we highlight the biological functions of the genes that code endolysosomal proteins from the perspective of understanding - and potentially reversing - the pathophysiology of endolysosomal disorders affecting the proximal tubule of the kidney. These insights might ultimately lead to potential treatments for currently intractable diseases and transform our ability to regulate kidney homeostasis and health.


Assuntos
Ecossistema , Nefropatias , Humanos , Rim , Túbulos Renais Proximais/metabolismo , Endossomos/metabolismo , Nefropatias/terapia
6.
Int Immunol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946351

RESUMO

Chronic inflammation is implicated in many types of diseases, including cardiovascular, neurodegenerative, metabolic, and immune disorders. The search for therapeutic targets to control chronic inflammation often involves narrowing down the various molecules associated with pathology that have been discovered by various omics analyses. Herein, a different approach to identify therapeutic targets against chronic inflammation is proposed and one such target is discussed as an example. In chronically inflamed tissues, a large number of cells receive diverse proinflammatory signals, the intracellular signals are intricately integrated, and complicated intercellular interactions are orchestrated. This review focuses on effectively blocking this chaotic inflammatory signaling network via the endolysosomal system, which acts as a cellular signaling hub. In endolysosomes, the inflammatory signals mediated by pathogen sensors, such as Toll-like receptors, and the signals from nutrient and metabolic pathways are integrally regulated. Disruption of endolysosome signaling results in a strong anti-inflammatory effect by disrupting various signaling pathways, including pathogen sensor-mediated signals, in multiple immune cells. The endolysosome-resident amino acid transporter, solute carrier family 15 member 4 (SLC15A4), which plays an important role in the regulation of endolysosome-mediated signals, is a promising therapeutic target for several inflammatory diseases, including autoimmune diseases. The mechanisms by which SLC15A4 regulates inflammatory responses may provide a proof of concept for the efficacy of therapeutic strategies targeting immune cell endolysosomes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38906273

RESUMO

BACKGROUND: Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES: Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS: HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS: We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS: These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.

8.
J Biol Chem ; 299(6): 104717, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068610

RESUMO

Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. ßγ-CAT, a complex of pore-forming protein BmALP1 (two ßγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intracellular or extracellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the ßγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for ßγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the ßγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of ßγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a pore-forming protein machine evolved to drive cell vesicular delivery and transport.


Assuntos
Cristalinas , Peptídeos , Animais , Peptídeos/metabolismo , Pele/metabolismo , Anuros/metabolismo , Cristalinas/metabolismo , Porinas/metabolismo , Imunoglobulina G/metabolismo
9.
Antimicrob Agents Chemother ; : e0034124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742905

RESUMO

Cell culture-based screening of a chemical library identified diphenoxylate as an antiviral agent against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The observed 50% effective concentrations ranged between 1.4 and 4.9 µM against the original wild-type strain and its variants. Time-of-addition experiments indicated that diphenoxylate is an entry blocker targeting a host factor involved in viral infection. Fluorescence microscopic analysis visualized that diphenoxylate prevented SARS-CoV-2 particles from penetrating the cell membrane and also impaired endo-lysosomal acidification. Diphenoxylate exhibited a synergistic inhibitory effect on SARS-CoV-2 infection in human lung epithelial Calu-3 cells when combined with a transmembrane serine protease 2 (TMPRSS2) inhibitor, nafamostat. This synergy suggested that efficient antiviral activity is achieved by blocking both TMPRSS2-mediated early and endosome-mediated late SARS-CoV-2 entry pathways. The antiviral efficacy of diphenoxylate against SARS-CoV-2 was reproducible in a human tonsil organoids system. In a transgenic mouse model expressing the obligate SARS-CoV-2 receptor, human angiotensin-converting enzyme 2, intranasal administration of diphenoxylate (10 mg/kg/day) significantly reduced the viral RNA copy number in the lungs by 70% on day 3. This study underscores that diphenoxylate represents a promising core scaffold, warranting further exploration for chemical modifications aimed at developing a new class of clinically effective antiviral drugs against SARS-CoV-2.

10.
EMBO J ; 39(18): e104494, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32643832

RESUMO

Cells respond to endolysosome damage by either repairing the damage or targeting damaged endolysosomes for degradation via lysophagy. However, the signals regulating the decision for repair or lysophagy are poorly characterised. Here, we show that the Parkinson's disease (PD)-related kinase LRRK2 is activated in macrophages by pathogen- or sterile-induced endomembrane damage. LRRK2 recruits the Rab GTPase Rab8A to damaged endolysosomes as well as the ESCRT-III component CHMP4B, thereby favouring ESCRT-mediated repair. Conversely, in the absence of LRRK2 and Rab8A, damaged endolysosomes are targeted to lysophagy. These observations are recapitulated in macrophages from PD patients where pathogenic LRRK2 gain-of-function mutations result in the accumulation of endolysosomes which are positive for the membrane damage marker Galectin-3. Altogether, this work indicates that LRRK2 regulates endolysosomal homeostasis by controlling the balance between membrane repair and organelle replacement, uncovering an unexpected function for LRRK2, and providing a new link between membrane damage and PD.


Assuntos
Membranas Intracelulares/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Macrófagos/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/genética , Endossomos/metabolismo , Ativação Enzimática/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Células RAW 264.7 , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
11.
Cell Mol Life Sci ; 80(7): 193, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391572

RESUMO

Extracellular vesicles (EVs) have emerged as key players in cell-to-cell communication in both physiological and pathological processes in the Central Nervous System. Thus far, the intracellular pathways involved in uptake and trafficking of EVs within different cell types of the brain are poorly understood. In our study, the endocytic processes and subcellular sorting of EVs were investigated in primary glial cells, particularly linked with the EV-associated α-synuclein (α-syn) transmission. Mouse microglia and astrocytic primary cultures were incubated with DiI-stained mouse brain-derived EVs. The internalization and trafficking pathways were analyzed in cells treated with pharmacological reagents that block the major endocytic pathways. Brain-derived EVs were internalized by both glial cell types; however, uptake was more efficient in microglia than in astrocytes. Colocalization of EVs with early and late endocytic markers (Rab5, Lamp1) indicated that EVs are sorted to endo-lysosomes for subsequent processing. Blocking actin-dependent phagocytosis and/or macropinocytosis with Cytochalasin D or EIPA inhibited EV entry into glial cells, whereas treatment with inhibitors that strip cholesterol off the plasma membrane, induced uptake, however differentially altered endosomal sorting. EV-associated fibrillar α-Syn was efficiently internalized and detected in Rab5- and Lamp1-positive compartments within microglia. Our study strongly suggests that EVs enter glial cells through phagocytosis and/or macropinocytosis and are sorted to endo-lysosomes for subsequent processing. Further, brain-derived EVs serve as scavengers and mediate cell-to-glia transfer of pathological α-Syn which is also targeted to the endolysosomal pathway, suggesting a beneficial role in microglia-mediated clearance of toxic protein aggregates, present in numerous neurodegenerative diseases.


Assuntos
Astrócitos , Endometriose , Animais , Camundongos , Feminino , Humanos , Microglia , Neuroglia , Sistema Nervoso Central , Transporte Biológico
12.
Pharmacology ; 109(4): 216-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569476

RESUMO

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.


Assuntos
Diferenciação Celular , Autofagia Mediada por Chaperonas , Proteínas de Choque Térmico HSC70 , Leucemia Promielocítica Aguda , Tretinoína , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Tretinoína/farmacologia , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Antineoplásicos/farmacologia
13.
Alzheimers Dement ; 20(6): 3864-3875, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38634500

RESUMO

BACKGROUND: Alzheimer's disease (AD) prevalence increases with age, yet a small fraction of the population reaches ages > 100 years without cognitive decline. We studied the genetic factors associated with such resilience against AD. METHODS: Genome-wide association studies identified 86 single nucleotide polymorphisms (SNPs) associated with AD risk. We estimated SNP frequency in 2281 AD cases, 3165 age-matched controls, and 346 cognitively healthy centenarians. We calculated a polygenic risk score (PRS) for each individual and investigated the functional properties of SNPs enriched/depleted in centenarians. RESULTS: Cognitively healthy centenarians were enriched with the protective alleles of the SNPs associated with AD risk. The protective effect concentrated on the alleles in/near ANKH, GRN, TMEM106B, SORT1, PLCG2, RIN3, and APOE genes. This translated to >5-fold lower PRS in centenarians compared to AD cases (P = 7.69 × 10-71), and 2-fold lower compared to age-matched controls (P = 5.83 × 10-17). DISCUSSION: Maintaining cognitive health until extreme ages requires complex genetic protection against AD, which concentrates on the genes associated with the endolysosomal and immune systems. HIGHLIGHTS: Cognitively healthy cent enarians are enriched with the protective alleles of genetic variants associated with Alzheimer's disease (AD). The protective effect is concentrated on variants involved in the immune and endolysosomal systems. Combining variants into a polygenic risk score (PRS) translated to > 5-fold lower PRS in centenarians compared to AD cases, and ≈ 2-fold lower compared to middle-aged healthy controls.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Feminino , Masculino , Idoso de 80 Anos ou mais , Predisposição Genética para Doença , Herança Multifatorial/genética , Alelos , Estudos de Casos e Controles
14.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999927

RESUMO

Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.


Assuntos
Doença de Alzheimer , Ácidos Docosa-Hexaenoicos , Endossomos , Lisossomos , Neurônios , Proteínas rab5 de Ligação ao GTP , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Lisossomos/metabolismo , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose , Fármacos Neuroprotetores/farmacologia , Sobrevivência Celular/efeitos dos fármacos
15.
J Cell Physiol ; 238(10): 2512-2527, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566721

RESUMO

The mechanism underlying long-term cognitive impairment caused by neonatal hypoxic-ischemic brain injury (HIBI) remains unclear. Autophagy is a closely related mechanism and may play a role in this process. We aimed to investigate the role of lysosomal transmembrane protein 175 (TMEM175) in the autophagy-lysosome pathway in neonatal rats with HIBI. A neonatal rat model of HIBI was established, hypoxia was induced, followed by left common carotid artery ligation. Expression levels of TMEM175 and the corresponding proteins involved in autophagy flux and the endolysosomal system fusion process were measured. Rats were administered TMEM175 plasmid via intracerebroventricular injection to induce overexpression. Brain damage and cognitive function were then assessed. TMEM175 was downregulated in the hippocampal tissue, and the autophagy-lysosome pathway was impaired following HIBI in neonatal rats. Overexpression of TMEM175 significantly mitigated neuronal injury and improved long-term cognitive and memory function in neonatal rats with HIBI. We found that improvement in the autophagy-lysosome pathway and endolysosomal system homeostasis, which are TMEM175 related, occurred via regulation of lysosomal membrane dynamic fusion. TMEM175 plays a critical role in maintaining the autophagy-lysosome pathway and endolysosomal homeostasis, contributing to the amelioration of neuronal injury and impaired long-term cognitive function following neonatal HIBI.

16.
Glia ; 71(9): 2266-2284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300531

RESUMO

Synucleinopathies refer to a range of neurodegenerative diseases caused by abnormal α-synuclein (α-Syn) deposition, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Their pathogenesis is strongly linked to microglial dysfunction and neuroinflammation, which involves the leucine-rich-repeat kinase 2 (LRRK2)-regulated nuclear factor of activated T-cells (NFAT). Of the NFAT family, NFATc1 has been found to be increasingly translocated into the nucleus in α-syn stimulation. However, the specific role of NFATc1-mediated intracellular signaling in PD remains elusive in regulating microglial functions. In the current study, we crossbred LRRK2 or NFATc1 conditional knockout mice with Lyz2Cre mice to generate mice with microglia-specific deletion of LRRK2 or NFATc1, and by stereotactic injection of fibrillary α-Syn, we generated PD models in these mice. We found that LRRK2 deficiency enhanced microglial phagocytosis in the mice after α-Syn exposure and that genetic inhibition of NFATc1 markedly diminished phagocytosis and α-Syn elimination. We further demonstrated that LRRK2 negatively regulated NFATc1 in α-Syn-treated microglia, in which microglial LRRK2-deficiency facilitated NFATc1 nuclear translocation, CX3CR1 upregulation, and microglia migration. Additionally, NFATc1 translocation upregulated the expression of Rab7 and promoted the formation of late lysosomes, resulting in α-Syn degradation. In contrast, the microglial NFATc1 deficiency impaired CX3CR1 upregulation and the formation of Rab7-mediated late lysosomes. These findings highlight the critical role of NFATc1 in modulating microglial migration and phagocytosis, in which the LRRK2-NFATc1 signaling pathway regulates the expression of microglial CX3CR1 and endocytic degradative Rab7 to attenuate α-synuclein immunotoxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doença de Parkinson/genética , Fagocitose/genética
17.
J Cell Biochem ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36924104

RESUMO

The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.

18.
J Gen Virol ; 104(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947577

RESUMO

Seneca Valley virus (SVV, also known as Senecavirus A), an oncolytic virus, is a nonenveloped, positive-strand RNA virus and the sole member of the genus Senecavirus within the family Picornaviridae. The mechanisms of SVV entry into cells are currently almost unknown. In the present study, we found that SVV entry into HEK293T cells is acidic pH-dependent by using ammonium chloride (NH4Cl) and chloroquine, both of which could inhibit SVV infection. We confirmed that dynamin II is required for SVV entry by using dynasore, silencing the dynamin II protein, or expressing the dominant-negative (DN) K44A mutant of dynamin II. Then, we discovered that chlorpromazine (CPZ) treatment or knockdown of the clathrin heavy chain (CLTC) protein significantly inhibited SVV infection. In addition, overexpression of CLTC promoted SVV infection. Caveolin-1 and membrane cholesterol were also required for SVV endocytosis. Notably, utilizing genistein, EIPA or nocodazole, we observed that macropinocytosis and microtubules are not involved in SVV entry. Furthermore, overexpression of the Rab7 and Rab9 proteins but not the Rab5 or Rab11 proteins promoted SVV infection. The findings were further validated by the knockdown of four Rabs and Lamp1 proteins, indicating that after internalization, SVV is transported from late endosomes to the trans-Golgi network (TGN) or lysosomes, respectively, eventually releasing its RNA into the cytosol from the lysosomes. Our findings concretely revealed SVV endocytosis mechanisms in HEK293T cells and provided an insightful theoretical foundation for further research into SVV oncolytic mechanisms.


Assuntos
Dinamina II , Picornaviridae , Humanos , Células HEK293 , Endocitose , Endossomos , Lisossomos , Internalização do Vírus
19.
J Neuroinflammation ; 20(1): 286, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037070

RESUMO

BACKGROUND: Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY: It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION: PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.


Assuntos
Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Progranulinas/metabolismo , Doenças Neurodegenerativas/metabolismo , Glicoproteínas/metabolismo , Inflamação/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo
20.
Chembiochem ; 24(24): e202300579, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37869939

RESUMO

Lipidation of the LC3 protein has frequently been employed as a marker of autophagy. However, LC3-lipidation is also triggered by stimuli not related to canonical autophagy. Therefore, characterization of the driving parameters for LC3 lipidation is crucial to understanding the biological roles of LC3. We identified a pseudo-natural product, termed Inducin, that increases LC3 lipidation independently of canonical autophagy, impairs lysosomal function and rapidly recruits Galectin 3 to lysosomes. Inducin treatment promotes Endosomal Sorting Complex Required for Transport (ESCRT)-dependent membrane repair and transcription factor EB (TFEB)-dependent lysosome biogenesis ultimately leading to cell death.


Assuntos
Autofagia , Lisossomos , Transporte Biológico , Galectina 3 , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA