Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
Annu Rev Cell Dev Biol ; 37: 115-142, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34242059

RESUMO

Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood.


Assuntos
Bactérias , Organelas , Bactérias/genética , Eucariotos , Células Eucarióticas , Genômica , Interações Hospedeiro-Patógeno/genética
2.
Annu Rev Genet ; 57: 411-434, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722685

RESUMO

Symbiotic interactions occur in all domains of life, providing organisms with resources to adapt to new habitats. A prime example is the endosymbiosis between corals and photosynthetic dinoflagellates. Eukaryotic dinoflagellate symbionts reside inside coral cells and transfer essential nutrients to their hosts, driving the productivity of the most biodiverse marine ecosystem. Recent advances in molecular and genomic characterization have revealed symbiosis-specific genes and mechanisms shared among symbiotic cnidarians. In this review, we focus on the cellular and molecular processes that underpin the interaction between symbiont and host. We discuss symbiont acquisition via phagocytosis, modulation of host innate immunity, symbiont integration into host cell metabolism, and nutrient exchange as a fundamental aspect of stable symbiotic associations. We emphasize the importance of using model systems to dissect the cellular complexity of endosymbiosis, which ultimately serves as the basis for understanding its ecology and capacity to adapt in the face of climate change.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Simbiose/genética , Ecossistema , Dinoflagellida/genética , Análise de Sistemas
3.
Annu Rev Microbiol ; 75: 631-647, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343017

RESUMO

The origin of eukaryotes has been defined as the major evolutionary transition since the origin of life itself. Most hallmark traits of eukaryotes, such as their intricate intracellular organization, can be traced back to a putative common ancestor that predated the broad diversity of extant eukaryotes. However, little is known about the nature and relative order of events that occurred in the path from preexisting prokaryotes to this already sophisticated ancestor. The origin of mitochondria from the endosymbiosis of an alphaproteobacterium is one of the few robustly established events to which most hypotheses on the origin of eukaryotes are anchored, but the debate is still open regarding the time of this acquisition, the nature of the host, and the ecological and metabolic interactions between the symbiotic partners. After the acquisition of mitochondria, eukaryotes underwent a fast radiation into several major clades whose phylogenetic relationships have been largely elusive. Recent progress in the comparative analyses of a growing number of genomes is shedding light on the early events of eukaryotic evolution as well as on the root and branching patterns of the tree of eukaryotes. Here I discuss current knowledge and debates on the origin and early evolution of eukaryotes. I focus particularly on how phylogenomic analyses have challenged some of the early assumptions about eukaryotic evolution, including the widespread idea that mitochondrial symbiosis in an archaeal host was the earliest event in eukaryogenesis.


Assuntos
Evolução Biológica , Células Eucarióticas , Eucariotos/genética , Células Eucarióticas/metabolismo , Filogenia , Células Procarióticas/metabolismo , Simbiose
4.
Bioessays ; 46(5): e2400012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436469

RESUMO

Both the concept of a Darwinian tree of life (TOL) and the possibility of its accurate reconstruction have been much criticized. Criticisms mostly revolve around the extensive occurrence of lateral gene transfer (LGT), instances of uptake of complete organisms to become organelles (with the associated subsequent gene transfer to the nucleus), as well as the implications of more subtle aspects of the biological species concept. Here we argue that none of these criticisms are sufficient to abandon the valuable TOL concept and the biological realities it captures. Especially important is the need to conceptually distinguish between organismal trees and gene trees, which necessitates incorporating insights of widely occurring LGT into modern evolutionary theory. We demonstrate that all criticisms, while based on important new findings, do not invalidate the TOL. After considering the implications of these new insights, we find that the contours of evolution are best represented by a TOL.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Filogenia , Animais
5.
Proc Natl Acad Sci U S A ; 120(17): e2206527120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071674

RESUMO

The evolution of the mitochondria was a significant event that gave rise to the eukaryotic lineage and most large complex life. Central to the origins of the mitochondria was an endosymbiosis between prokaryotes. Yet, despite the potential benefits that can stem from a prokaryotic endosymbiosis, their modern occurrence is exceptionally rare. While many factors may contribute to their rarity, we lack methods for estimating the extent to which they constrain the appearance of a prokaryotic endosymbiosis. Here, we address this knowledge gap by examining the role of metabolic compatibility between a prokaryotic host and endosymbiont. We use genome-scale metabolic flux models from three different collections (AGORA, KBase, and CarveMe) to assess the viability, fitness, and evolvability of potential prokaryotic endosymbioses. We find that while more than half of host-endosymbiont pairings are metabolically viable, the resulting endosymbioses have reduced growth rates compared to their ancestral metabolisms and are unlikely to gain mutations to overcome these fitness differences. In spite of these challenges, we do find that they may be more robust in the face of environmental perturbations at least in comparison with the ancestral host metabolism lineages. Our results provide a critical set of null models and expectations for understanding the forces that shape the structure of prokaryotic life.


Assuntos
Células Procarióticas , Simbiose , Filogenia , Simbiose/genética , Células Procarióticas/metabolismo , Eucariotos/genética , Células Eucarióticas/metabolismo , Evolução Biológica
6.
Proc Natl Acad Sci U S A ; 120(40): e2311872120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748072

RESUMO

The planula larvae of the sea anemone Aiptasia have so far not been reported to complete their life cycle by undergoing metamorphosis into adult forms. This has been a major obstacle in their use as a model for coral-dinoflagellate endosymbiosis. Here, we show that Aiptasia larvae actively feed on crustacean nauplii, displaying a preference for live prey. This feeding behavior relies on functional stinging cells, indicative of complex neuronal control. Regular feeding leads to significant size increase, morphological changes, and efficient settlement around 14 d postfertilization. Surprisingly, the presence of dinoflagellate endosymbionts does not affect larval growth or settlement dynamics but is crucial for sexual reproduction. Our findings finally close Aiptasia's life cycle and highlight the functional nature of its larvae, as in Haeckel's Gastrea postulate, yet reveal its active carnivory, thus contributing to our understanding of early metazoan evolution.


Assuntos
Antozoários , Asteraceae , Dinoflagellida , Anêmonas-do-Mar , Animais , Simbiose , Gástrula , Larva
7.
Proc Natl Acad Sci U S A ; 120(12): e2220100120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36927158

RESUMO

Kleptoplasts (kP) are distinct among photosynthetic organelles in eukaryotes (i.e., plastids) because they are routinely sequestered from prey algal cells and function only temporarily in the new host cell. Therefore, the hosts of kleptoplasts benefit from photosynthesis without constitutive photoendosymbiosis. Here, we report that the euglenozoan Rapaza viridis has only kleptoplasts derived from a specific strain of green alga, Tetraselmis sp., but no canonical plastids like those found in its sister group, the Euglenophyceae. R. viridis showed a dynamic change in the accumulation of cytosolic polysaccharides in response to light-dark cycles, and 13C isotopic labeling of ambient bicarbonate demonstrated that these polysaccharides originate in situ via photosynthesis; these data indicate that the kleptoplasts of R. viridis are functionally active. We also identified 276 sequences encoding putative plastid-targeting proteins and 35 sequences of presumed kleptoplast transporters in the transcriptome of R. viridis. These genes originated in a wide range of algae other than Tetraselmis sp., the source of the kleptoplasts, suggesting a long history of repeated horizontal gene transfer events from different algal prey cells. Many of the kleptoplast proteins, as well as the protein-targeting system, in R. viridis were shared with members of the Euglenophyceae, providing evidence that the early evolutionary stages in the green alga-derived secondary plastids of euglenophytes also involved kleptoplasty.


Assuntos
Clorófitas , Fotossíntese , Fotossíntese/genética , Plastídeos/genética , Plastídeos/metabolismo , Eucariotos/genética , Clorófitas/genética , Clorófitas/metabolismo , Transcriptoma , Filogenia , Simbiose/genética
8.
Proc Natl Acad Sci U S A ; 120(24): e2219292120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276405

RESUMO

Plants have two endosymbiotic organelles originated from two bacterial ancestors. The transition from an independent bacterium to a successful organelle would have required extensive rewiring of biochemical networks for its integration with archaeal host. Here, using Arabidopsis as a model system, we show that plant D-aminoacyl-tRNA deacylase 1 (DTD1), of bacterial origin, is detrimental to organellar protein synthesis owing to its changed tRNA recognition code. Plants survive this conflict by spatially restricting the conflicted DTD1 to the cytosol. In addition, plants have targeted archaeal DTD2 to both the organelles as it is compatible with their translation machinery due to its strict D-chiral specificity and lack of tRNA determinants. Intriguingly, plants have confined bacterial-derived DTD1 to work in archaeal-derived cytosolic compartment whereas archaeal DTD2 is targeted to bacterial-derived organelles. Overall, the study provides a remarkable example of the criticality of optimization of biochemical networks for survival and evolution of plant mitochondria and chloroplast.


Assuntos
Arabidopsis , Organelas , Organelas/metabolismo , Mitocôndrias/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Cloroplastos/metabolismo , RNA de Transferência/metabolismo , Arabidopsis/genética
9.
Proc Natl Acad Sci U S A ; 120(27): e2221595120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364116

RESUMO

The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.


Assuntos
Anti-Infecciosos , Cromatóforos , Rhizaria , Evolução Biológica , Fotossíntese/genética , Cromatóforos/metabolismo , Anti-Infecciosos/metabolismo
10.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271287

RESUMO

DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.


Assuntos
Cianobactérias , Organelas , Organelas/genética , Filogenia , DNA Polimerase Dirigida por DNA/genética , Plastídeos/genética , Mitocôndrias , Cianobactérias/genética , Simbiose
11.
Annu Rev Genet ; 51: 1-22, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28846455

RESUMO

Present day mitochondria and plastids (chloroplasts) evolved from formerly free-living bacteria that were acquired through endosymbiosis more than a billion years ago. Conversion of the bacterial endosymbionts into cell organelles involved the massive translocation of genetic material from the organellar genomes to the nucleus. The development of transformation technologies for organellar genomes has made it possible to reconstruct this endosymbiotic gene transfer in laboratory experiments and study the mechanisms involved. Recently, the horizontal transfer of genetic information between organisms has also become amenable to experimental investigation. It led to the discovery of horizontal genome transfer as an asexual process generating new species and new combinations of nuclear and organellar genomes. This review describes experimental approaches towards studying endosymbiotic and horizontal gene transfer processes, discusses the new knowledge gained from these approaches about both the evolutionary significance of gene transfer and the underlying molecular mechanisms, and highlights exciting possibilities to exploit gene and genome transfer in biotechnology and synthetic biology.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma de Planta , Plantas/genética , Simbiose/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Especiação Genética , Genômica/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células Vegetais/metabolismo
12.
Bioessays ; 45(2): e2200085, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456469

RESUMO

Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long-term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception - a class of MGE termed REPIN. REPINs are non-autonomous MGEs whose duplication depends on non-jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria.


Assuntos
Bactérias , Elementos de DNA Transponíveis , Bactérias/genética , Elementos de DNA Transponíveis/genética , Genoma Bacteriano/genética , Sequências Repetitivas Dispersas
13.
Bioessays ; 45(1): e2200165, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328783

RESUMO

We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (Ne ) in accelerating divergence post-endosymbiosis due to limits to dispersal and reproductive isolation that reduce Ne , leading to local adaptation. We posit that isolated populations exploit different strategies and behaviors and assort themselves in non-overlapping niches to minimize competition during the early, rapid evolutionary phase of organelle integration. The endosymbiotic ratchet provides a general framework for interpreting post-endosymbiosis lineage evolution that is driven by disruptive selection and demographic and population shifts. Also see the video abstract here: https://youtu.be/gYXrFM6Zz6Q.


Assuntos
Rhizaria , Simbiose , Plastídeos , Fotossíntese , Filogenia , Evolução Biológica
14.
Proc Natl Acad Sci U S A ; 119(30): e2208461119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858432

RESUMO

Insects frequently harbor endosymbionts, which are bacteria housed within host tissues. These associations are stably maintained over evolutionary timescales through vertical transmission of endosymbionts from host mothers to their offspring. Some endosymbionts manipulate host reproduction to facilitate spread within natural populations. Consequently, such infections have major impacts on insect physiology and evolution. However, technical hurdles have limited our understanding of the molecular mechanisms underlying such insect-endosymbiont interactions. Here, we investigate the nutritional interactions between endosymbiotic partners using the tractable insect Drosophila melanogaster and its natural endosymbiont Spiroplasma poulsonii. Using a combination of functional assays, metabolomics, and proteomics, we show that the abundance and amino acid composition of a single Spiroplasma membrane lectin, Spiralin B (SpiB), dictates the amino acid requirements of the endosymbiont and determines its proliferation within host tissues. Ectopically increasing SpiB levels in host tissues disrupts localization of endosymbionts in the fly egg chambers and decreases vertical transmission. We find that SpiB is likely to be required by the endosymbiont to enter host oocytes, which may explain the massive investment of S. poulsonii in SpiB synthesis. SpiB both permits vertical transmission of the symbiont and limits its growth in nutrient-limiting conditions for the host; therefore, a single protein plays a pivotal role in ensuring durability of the interaction in a variable environment.


Assuntos
Proteínas da Membrana Bacteriana Externa , Drosophila melanogaster , Interações entre Hospedeiro e Microrganismos , Spiroplasma , Simbiose , Aminoácidos/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Spiroplasma/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012979

RESUMO

Animals use geomagnetic fields for navigational cues, yet the sensory mechanism underlying magnetic perception remains poorly understood. One idea is that geomagnetic fields are physically transduced by magnetite crystals contained inside specialized receptor cells, but evidence for intracellular, biogenic magnetite in eukaryotes is scant. Certain bacteria produce magnetite crystals inside intracellular compartments, representing the most ancient form of biomineralization known and having evolved prior to emergence of the crown group of eukaryotes, raising the question of whether magnetite biomineralization in eukaryotes and prokaryotes might share a common evolutionary history. Here, we discover that salmonid olfactory epithelium contains magnetite crystals arranged in compact clusters and determine that genes differentially expressed in magnetic olfactory cells, contrasted to nonmagnetic olfactory cells, share ancestry with an ancient prokaryote magnetite biomineralization system, consistent with exaptation for use in eukaryotic magnetoreception. We also show that 11 prokaryote biomineralization genes are universally present among a diverse set of eukaryote taxa and that nine of those genes are present within the Asgard clade of archaea Lokiarchaeota that affiliates with eukaryotes in phylogenomic analysis. Consistent with deep homology, we present an evolutionary genetics hypothesis for magnetite formation among eukaryotes to motivate convergent approaches for examining magnetite-based magnetoreception, molecular origins of matrix-associated biomineralization processes, and eukaryogenesis.


Assuntos
Biomineralização/genética , Óxido Ferroso-Férrico/química , Fenômenos Magnéticos , Animais , Evolução Biológica , Genômica , Magnetossomos/genética , Salmão
16.
Proc Natl Acad Sci U S A ; 119(23): e2121241119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639693

RESUMO

The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a "chromatophore," a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (∼120 million years ago) that is independent of the evolution of primary plastids in plants (initiated ∼1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were "rewired," acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host­endosymbiont association and sustained the evolution of a photosynthetic organelle.


Assuntos
Amoeba , Evolução Biológica , Rhizaria , Simbiose , Amoeba/genética , Eucariotos/genética , Plastídeos/genética , Simbiose/genética
17.
J Biol Chem ; 299(3): 102917, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657643

RESUMO

The division of cyanobacteria and their chloroplast descendants is orchestrated by filamenting temperature-sensitive Z (FtsZ), a cytoskeletal GTPase that polymerizes into protofilaments that form a "Z ring" at the division site. The Z ring has both a scaffolding function for division-complex assembly and a GTPase-dependent contractile function that drives cell or organelle constriction. A single FtsZ performs these functions in bacteria, whereas in chloroplasts, they are performed by two copolymerizing FtsZs, called AtFtsZ2 and AtFtsZ1 in Arabidopsis thaliana, which promote protofilament stability and dynamics, respectively. To probe the differences between cyanobacterial and chloroplast FtsZs, we used light scattering to characterize the in vitro protofilament dynamics of FtsZ from the cyanobacterium Synechococcus elongatus PCC 7942 (SeFtsZ) and investigate how coassembly of AtFtsZ2 or AtFtsZ1 with SeFtsZ influences overall dynamics. SeFtsZ protofilaments assembled rapidly and began disassembling before GTP depletion, whereas AtFtsZ2 protofilaments were far more stable, persisting beyond GTP depletion. Coassembled SeFtsZ-AtFtsZ2 protofilaments began disassembling before GTP depletion, similar to SeFtsZ. In contrast, AtFtsZ1 did not alter disassembly onset when coassembled with SeFtsZ, but fluorescence recovery after photobleaching analysis showed it increased the turnover of SeFtsZ subunits from SeFtsZ-AtFtsZ1 protofilaments, mirroring its effect upon coassembly with AtFtsZ2. Comparisons of our findings with previous work revealed consistent differences between cyanobacterial and chloroplast FtsZ dynamics and suggest that the scaffolding and dynamics-promoting functions were partially separated during evolution of two chloroplast FtsZs from their cyanobacterial predecessor. They also suggest that chloroplasts may have evolved a mechanism distinct from that in cyanobacteria for promoting FtsZ protofilament dynamics.


Assuntos
Proteínas do Citoesqueleto , Synechococcus , Arabidopsis/genética , Proteínas de Bactérias/genética , Cloroplastos , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato , Synechococcus/genética , Temperatura , Proteínas do Citoesqueleto/metabolismo
18.
Small ; 20(31): e2310310, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38506612

RESUMO

Photosynthesis in plants occurs within specialized organelles known as chloroplasts, which are postulated to have originated through endosymbiosis with cyanobacteria. In nature, instances are also observed wherein specific invertebrates engage in symbiotic relationships with photosynthetic bacteria, allowing them to subsist as photoautotrophic organisms over extended durations. Consequently, the concept of engineering artificial endosymbiosis between mammalian cells and cyanobacteria represents a promising avenue for enabling photosynthesis in mammals. The study embarked with the identification of Synechocystis PCC 6803 as a suitable candidate for establishing a long-term endosymbiotic relationship with macrophages. The cyanobacteria internalized by macrophages exhibited the capacity to rescue ATP deficiencies within their host cells under conditions of illumination. Following this discovery, a membrane-coating strategy is developed for the intracellular delivery of cyanobacteria into non-macrophage mammalian cells. This pioneering technique led to the identification of human embryonic kidney cells HEK293 as optimal hosts for achieving sustained endosymbiosis with Synechocystis PCC 6803. The study offers valuable insights that may serve as a reference for the eventual achievement of artificial photosynthesis in mammals.


Assuntos
Fotossíntese , Simbiose , Synechocystis , Humanos , Simbiose/fisiologia , Células HEK293 , Synechocystis/metabolismo , Synechocystis/fisiologia , Animais , Macrófagos/metabolismo , Trifosfato de Adenosina/metabolismo
19.
New Phytol ; 242(3): 1055-1067, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439684

RESUMO

Chloroplasts are the result of endosymbiosis of cyanobacterial organisms with proto-eukaryotes. The psbA, psbD and psbO genes are present in all oxyphototrophs and encode the D1/D2 proteins of photosystem II (PSII) and PsbO, respectively. PsbO is a peripheral protein that stabilizes the O2-evolving complex in PSII. Of these genes, psbA and psbD remained in the chloroplastic genome, while psbO was transferred to the nucleus. The genomes of selected cyanobacteria, chloroplasts and cyanophages carrying psbA and psbD, respectively, were analysed. The highest density of genes and coding sequences (CDSs) was estimated for the genomes of cyanophages, cyanobacteria and chloroplasts. The synonymous mutation rate (rS) of psbA and psbD in chloroplasts remained almost unchanged and is lower than that of psbO. The results indicate that the decreasing genome size in chloroplasts is more similar to the genome reduction observed in contemporary endosymbiotic organisms than in streamlined genomes of free-living cyanobacteria. The rS of atpA, which encodes the α-subunit of ATP synthase in chloroplasts, suggests that psbA and psbD, and to a lesser extent psbO, are ancient and conservative and arose early in the evolution of oxygenic photosynthesis. The role of cyanophages in the evolution of oxyphototrophs and chloroplastic genomes is discussed.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Fotossíntese/genética , Eucariotos/metabolismo
20.
Plant Cell Environ ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847336

RESUMO

Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA