Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533751

RESUMO

The physiological processes underlying the post-prandial rise in metabolic rate, most commonly known as the 'specific dynamic action' (SDA), remain debated and controversial. This Commentary examines the SDA response from two opposing hypotheses: (i) the classic interpretation, where the SDA represents the energy cost of digestion, versus (ii) the alternative view that much of the SDA represents the energy cost of growth. The traditional viewpoint implies that individuals with a reduced SDA should grow faster given the same caloric intake, but experimental evidence for this effect remains scarce and inconclusive. Alternatively, we suggest that the SDA reflects an organism's efficacy in allocating the ingested food to growth, emphasising the role of post-absorptive processes, particularly protein synthesis. Although both viewpoints recognise the trade-offs in energy allocation and the dynamic nature of energy distribution among physiological processes, we argue that equating the SDA with 'the energy cost of digestion' oversimplifies the complexities of energy use in relation to the SDA and growth. In many instances, a reduced SDA may reflect diminished nutrient absorption (e.g. due to lower digestive efficiency) rather than increased 'free' energy available for somatic growth. Considering these perspectives, we summarise evidence both for and against the opposing hypotheses with a focus on ectothermic vertebrates. We conclude by presenting a number of future directions for experiments that may clarify what the SDA is, and what it is not.


Assuntos
Ingestão de Energia , Período Pós-Prandial , Humanos , Animais , Período Pós-Prandial/fisiologia , Consumo de Oxigênio , Digestão/fisiologia , Metabolismo Energético/fisiologia
2.
J Evol Biol ; 36(12): 1731-1744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955420

RESUMO

There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.


Assuntos
Evolução Biológica , Simbiose , Animais , Simbiose/fisiologia , Modelos Teóricos
3.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334714

RESUMO

The lifetime growth of almost all fishes follows a biphasic relationship - juvenile growth is rapid and adult growth subsequently decelerates. For a trend that is so ubiquitous, there is no general agreement as to the underlying mechanisms causing adult growth to decelerate. Ongoing theories argue that adult growth slows because either the gills fail to supply the body with surplus oxygen needed for continued somatic gain (i.e. oxygen limited), or sexual maturation induces a switch in energy allocation towards reproduction and away from growth (i.e. energy limited). Here, we empirically tested these notions by tracking the individual growth trajectories of ∼100 female Galaxias maculatus, ranging in size, during their first 3 months of adulthood. At a summer temperature of 20°C, we provided subsets of fish with additional energy (fed once versus twice a day), supplementary oxygen (normoxia versus hyperoxia), or a combination of the two, to assess whether we could change the trajectory of adult growth. We found that growth improved marginally with additional energy, yet remained unaffected by supplementary oxygen, thereby providing evidence for a role for energy reallocation in the deceleration of adult growth. Interestingly, additional dietary energy had a disproportionately larger effect on the growth of fish that matured at a greater size, revealing size-dependent variance in energy acquisition and/or allocation budgets at summer temperatures. Overall, these findings contribute towards understanding the mechanisms driving widespread declines in the body size of fish with climate warming.


Assuntos
Desaceleração , Oxigênio , Feminino , Animais , Peixes , Reprodução , Tamanho Corporal , Temperatura
4.
J Environ Manage ; 342: 118241, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276622

RESUMO

The free flow of energy cannot be fully achieved in China's energy market because of incomplete market-oriented reform, resulting in energy allocation distortion, which has hampered carbon emissions reduction. However, the extent of energy allocation distortion and its role in carbon emission efficiency remain unexplored. Therefore, this study aims to measure energy allocation distortion and investigate its impact on carbon emission efficiency. For this purpose, first, we derive energy allocation distortion based on a production function and carbon emission efficiency using a meta-frontier non-radial Malmquist index. To effectively address the endogeneity issue, we use a generalized method of moments model to estimate the impact of energy allocation distortion on carbon emission efficiency. Second, we further explore the distortionary mechanism of carbon emission efficiency associated with energy allocation and analyze the asymmetric effect of energy allocation distortion on carbon emission efficiency. The results show a certain degree of energy allocation distortion throughout the country, and disparity exists among different regions. The average value of carbon emission efficiency in the eastern region is 1.0286, well ahead of the national average, demonstrating better performance than other regions. Energy allocation distortion negatively affects carbon emission efficiency, with a 1% increase in energy allocation distortion leading to a 0.251% decrease in carbon emission efficiency. Technological progress, the structure of energy consumption, and industrial structure are important transmission channels through which energy allocation affects carbon emission efficiency. The study contributes to uncovering regional energy allocation distortion and its impacts on carbon emission efficiency and providing strategic policy recommendations for improving energy allocation efficiency.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , China , Indústrias , Eficiência , Dióxido de Carbono
5.
J Math Biol ; 85(6-7): 68, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36416949

RESUMO

Various environmental alterations resulting from the current global change compromise the persistence of species in their habitual environment. To cope with the obvious risk of extinction, plastic responses provide organisms with rapid acclimatization to new environments. The premise of plastic rescue has been theoretically studied from mathematical models in both deterministic and stochastic environments, focusing on analyzing the persistence and stability of the populations. Here, we evaluate this premise in the framework of a consumer-resource interaction considering the energy investment towards reproduction vs. maintenance as a plastic trait according to positive/negative variation of the available resource. A basic consumer-resource mathematical model is formulated based on the principle of biomass conversion that incorporates the energy allocation toward vital functions of the life-cycle of consumer individuals. Our mathematical approach is based on the impulsive differential equations at fixed moments considering two impulsive effects associated with the instants at which consumers obtain environmental information and when energy allocation strategy change occurs. From a preliminary analysis of the non-plastic temporal dynamics, namely when the energy allocation is constant over time and without experiencing changes concerning the variation of resources, both the persistence and stability of the consumer-resource dynamic are dependent on the energy allocation strategies belonging to a set termed stability range. We found that the plastic energy allocation can promote a stable dynamical pattern in the consumer-resource interaction depending on both the magnitude of the energy allocation change and the time lag between environmental sensibility instants and when the expression of the plastic trait occurs.


Assuntos
Modelos Biológicos , Reprodução , Humanos , Reprodução/fisiologia , Modelos Teóricos , Biomassa , Fenótipo
6.
J Fish Biol ; 101(5): 1134-1141, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35900182

RESUMO

Mozambique tilapia Oreochromis mossambicus (Peters) is an invasive fish and a continuous breeder in inland waters of India. Present investigation highlights the distinct developmental stages of developing ovary and associated changes in the energy content. This investigation helps to understand the allocation of energy for development of eggs, prespawn and also oral brooding by the female. Although it is a continuous breeder, based on size of the ovary, number of eggs, their size and energy content, immature, early maturing, developing, prespawning and spawning stages are clearly noticed. Egg diameter during development of ovary varied between 0.31 mm (immature) and 2.21 mm (spawning). Energy content of ovary from immature to spawning stage ranged from 20.7515 kJ g-1 dry ovary to 31.1560 kJ g-1 dry ovary. Nearly 28.73% of energy content of ovary is expended for spawning. Similarly, yolk-sac fry utilized nearly 25.85% of energy of the fertilized egg for its development. Energy content of ovary of mouth-brooding female averaged 22.9528 kJ g-1 dry ovary, which is comparable to energy content of early maturing stage of ovary (24.5558 kJ g-1 dry ovary). A strong correlation between body weight and energy content of the developing ovary (P < 0.01), and between ovary weight and energy content of ovary (P < 0.01), was evident. During mouth-brooding, the fish continues to allocate energy to its developing ovary. Energy investment by the fish is the result of simultaneous processes associated with gonadal and somatic energy. As body size growth and gonadal development are interconnected, information on energy utilization by an iteroparous mouth-brooding fish could provide the pattern of energy allocation during ovarian developmental phase. Further details of energy utilization, as explained in this paper, could be used as one of the factors to predict the efficiency of fish production.


Assuntos
Ciclídeos , Tilápia , Feminino , Animais , Índia , Ovário , Água
7.
Ecol Lett ; 24(4): 648-657, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511789

RESUMO

Rapid life-history changes caused by size-selective harvesting are often interpreted as a response to direct harvest selection against a large body size. However, similar trait changes may result from a harvest-induced relaxation of natural selection for a large body size via density-dependent selection. Here, we show evidence of such density-dependent selection favouring large-bodied individuals at high population densities, in replicated pond populations of medaka fish. Harvesting, in contrast, selected medaka directly against a large body size and, in parallel, decreased medaka population densities. Five years of harvesting were enough for harvested and unharvested medaka populations to inherit the classically predicted trait differences, whereby harvested medaka grew slower and matured earlier than unharvested medaka. We show that this life-history divergence was not driven by direct harvest selection for a smaller body size in harvested populations, but by density-dependent natural selection for a larger body size in unharvested populations.


Assuntos
Peixes , Seleção Genética , Animais , Tamanho Corporal , Humanos , Fenótipo , Densidade Demográfica
8.
Biol Lett ; 17(10): 20210244, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637638

RESUMO

Postnatal growth in birds and mammals is the time of highest vulnerability and relatively high energy demands and therefore shapes the organisms' future outcomes. Several different factors might impose limitations on growth in juveniles, one of them being the efficiency of the digestive process and size of the gastrointestinal tract. We tested the gut size-growth rate relationship using a unique experimental model-mice from a selection experiment designed to produce two lines with divergent levels of basal metabolic rate (BMR): the high BMR (H-BMR) and low BMR (L-BMR) line types. These lines differ with respect to not only BMR, but also correlated traits-internal organ size and food intake. Applying a cross-fostering design and a thermoregulatory burden imposed by shaving the mothers, we demonstrated that the mass of intestine strongly affected the growth rate, with the H-BMR pups having larger intestines and growing faster, and with reduced growth rate of pups of both lines nursed by shaved L-BMR mothers. Our study also provides a functional link between high growth rate of neonates and high BMR of adults, partly reflecting metabolic costs of maintenance of their guts.


Assuntos
Metabolismo Basal , Regulação da Temperatura Corporal , Animais , Aves , Peso Corporal , Camundongos , Tamanho do Órgão
9.
Zoolog Sci ; 38(6): 513-522, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34854283

RESUMO

We examined the effects of environmental salinity and feeding status on the growth and metabolic parameters of underyearling masu salmon. Fish were first acclimated to salinities of 0 (< 0.1), 11, or 22 psu for 10 days, after which time 50% of the fish in each group were fasted for 5 days followed by refeeding for 5 days. No effects on body length/weight were observed over the 20 days from the beginning of the experiment. Gill Na+, K+-ATPase (NKA) activity increased 20 and 10 days after transfer to water at 11 and 22 psu, respectively. Serum Na+ and Cl- levels were high in fish at 22 psu on day 20 but much lower than those in the environmental water, suggesting that fish at this salinity were able to hypo-osmoregulate. However, acclimation to 22 psu resulted in a reduction in feeding rate on day 20. Serum insulin-like growth factor (IGF)-I levels and liver glycogen content were reduced by fasting and restored after 5 days of refeeding, except in the fish at 22 psu. Intensities of serum IGFBP-1a and -1b bands were increased at higher salinities, whereas fasting/refeeding affected only IGFBP-1b. The present study suggests that acclimating masu salmon parr to 11 psu had no effect on metabolic and growth parameters, while 22 psu presumably suppressed their growth potential due to the possible energy cost or stress for osmoregulation. The disparate responses of circulating IGFBP-1a and -1b to higher salinity and fasting highlight their utility as indices of various catabolic statuses.


Assuntos
Oncorhynchus , Aclimatação , Animais , Brânquias , Oncorhynchus/metabolismo , Osmorregulação , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
Gen Comp Endocrinol ; 306: 113736, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610572

RESUMO

Regulation of energy allocation and metabolic rate plays an important role in determining behavior and fitness in wild animals, calling for the validation of non-invasive markers of energetic condition. Recently, the thyroid hormone triiodothyronine (T3) has emerged as a promising marker as concentrations decrease to lower the metabolic rate during energetically challenging periods. However, it remains largely unclear whether T3 merely represents an alternative or provides additional information compared to other compounds involved in the regulation of energy acquisition and allocation, like cortisol and C-peptide, as few joint measurements have been conducted to date in non-invasively collected samples. We aimed to validate the non-invasive measurement of immunoreactive urinary total T3 (uTT3), in comparison to urinary cortisol (uCort) and urinary C-peptide (uCP), as a marker of metabolic response to variation in food intake in macaques, and to address a number of issues regarding the collection, storage and processing of samples which are important for application of uTT3 measurements under field conditions. We used daily samples and body mass measures from a prior food restriction-refeeding experiment over 4 weeks with six captive macaques and analyzed concentrations of uTT3 and uCort in samples collected prior to (fasting) and after morning feeding (non-fasting). Concentrations of uTT3 decreased in response to restriction in food supply and were also lower during weeks of food restriction compared to weeks of refeeding. Variation in uTT3 also correlated positively with variation in body mass and concentrations of uCP. As expected, uCort showed the reverse pattern, increasing during food restriction and decreasing following refeeding, but was not associated with variation in body mass. Generally, compared to fasting samples, concentrations were higher in post-morning feeding, i.e. non-fasting, samples for uTT3 but not uCort. Contamination of urine samples with fecal matter, but not soil, and exposure to UV light led to a decrease in uTT3. uTT3 was largely unaffected by repeated freeze-thaw cycles and by refrigeration for medium-term storage (2 days) but degraded substantially when stored at ambient temperature for the same period. In conclusion, uTT3 measurements inform on the effect of food intake and its associated metabolic response to variation in energetic status. Since uTT3 is reasonably robust to many issues associated with collection and storage of urine samples under field conditions, it is a promising biomarker for studies of energetic condition and basal metabolic rate in wild macaques.


Assuntos
Macaca , Tri-Iodotironina , Animais , Animais Selvagens , Hidrocortisona , Hormônios Tireóideos
11.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836577

RESUMO

As a novel nonthermal technology, nonthermal plasma (NTP) has attracted a lot of attention. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, the molecular mechanisms of VBNC Staphylococcus aureus induced by NTP were investigated. With the use of a propidium monoazide quantitative PCR (PMA-qPCR) technique combined with a plate count method, we confirmed that 8.1 to 24.3 kJ NTP induced S. aureus into a VBNC state at a level of 7.4 to 7.6 log10 CFU/ml. The transcriptomic analysis was conducted and revealed that most energy-dependent physiological activities (e.g., metabolism) were arrested in VBNC S. aureus, while the oxidative stress response-related genes (katA, dps, msrB, msrA, and trxA) were significantly upregulated. In addition, this study showed that the ATP depletion by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) pretreatment could accelerate the formation of VBNC S. aureus The NTP-generated oxidative stress triggers the staphylococcal oxidative stress response, which consumes part of cellular energy (e.g., ATP). The energy allocation is therefore changed, and the energy assigned for other energy-dependent physiological activities (cell growth and division, etc.) is reduced, subsequently forcing S. aureus into a VBNC state. Therefore, the alterations of energy allocation should be some of the major contributors to the induction of VBNC S. aureus with NTP exposure. This study provides valuable knowledge for controlling the formation of VBNC S. aureus during NTP treatment.IMPORTANCE In recent years, nonthermal plasma (NTP) technology has received a lot of attention as a promising alternative to thermal pasteurization in the food industry. However, little is known about the microbial stress response toward NTP, which could be a potential risk to food safety and impede the development of NTP. A viable but nonculturable (VBNC) state is one of the most common survival strategies employed by microorganisms against external stress. This study investigated the mechanisms of the formation of VBNC Staphylococcus aureus by NTP in a more comprehensive and systematic aspect than had been done before. Our work confirmed that the NTP-generated oxidative stress induced changes in energy allocation as a driving force for the formation of VBNC S. aureus This study could provide better knowledge for controlling the occurrence of VBNC S. aureus induced by NTP, which could lead to more rational design and ensure the development of safe foods.


Assuntos
Azidas/química , Viabilidade Microbiana , Estresse Oxidativo , Gases em Plasma/química , Propídio/análogos & derivados , Staphylococcus aureus/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Propídio/química , Staphylococcus aureus/efeitos dos fármacos
12.
J Exp Biol ; 223(Pt 11)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32366687

RESUMO

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly hatched larvae. Treatment-related embryo mortality until hatching (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacity. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although this is probably associated with energetic trade-offs. Interestingly, whole-larvae enzyme activity (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.


Assuntos
Gadus morhua , Água do Mar , Animais , Brânquias , Homeostase , Concentração de Íons de Hidrogênio , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-32590052

RESUMO

Molluscan shell formation is a complex energy demanding process sensitive to the shifts in seawater CaCO3 saturation due to changes in salinity and pH. We studied the effects of salinity and pH on energy demand and enzyme activities of biomineralizing cells of the Pacific oyster (Crassostrea gigas) and the hard-shell clam (Mercenaria mercenaria). Adult animals were exposed for 14 days to high (30), intermediate (18), or low (10) salinity at either high (8.0-8.2) or low (7.8) pH. Basal metabolic cost as well as the energy cost of the biomineralization-related cellular processes were determined in isolated mantle edge cells and hemocytes. The total metabolic rates were similar in the hemocytes of the two studied species, but considerably higher in the mantle cells of C. gigas compared with those of M. mercenaria. Cellular respiration was unaffected by salinity in the clams' cells, while in oysters' cells the highest respiration rate was observed at intermediate salinity (18). In both studied species, low pH suppressed cellular respiration. Low pH led to an upregulation of Na+/K+ ATPase activity in biomineralizing cells of oysters and clams. Activities of Ca2+ ATPase and H+ ATPase, as well as the cellular energy costs of Ca2+ and H+ transport in the biomineralizing cells were insensitive to the variation in salinity and pH in the two studied species. Variability in cellular response to low salinity and pH indicates that the disturbance of shell formation under these conditions has different underlying mechanisms in the two studied species.


Assuntos
Crassostrea/fisiologia , Mercenaria/fisiologia , Consumo de Oxigênio , Água do Mar , Animais , Biomineralização , Cálcio/química , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Membrana Celular/metabolismo , Respiração Celular , Crassostrea/genética , Hemócitos/metabolismo , Hemolinfa/metabolismo , Concentração de Íons de Hidrogênio , Íons , Mercenaria/genética , Prótons , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Água , Poluentes Químicos da Água/metabolismo
14.
Entropy (Basel) ; 22(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33286950

RESUMO

This study investigates the information-theoretic waveform design problem to improve radar performance in the presence of signal-dependent clutter environments. The goal was to study the waveform energy allocation strategies and provide guidance for radar waveform design through the trade-off relationship between the information theory criterion and the signal-to-interference-plus-noise ratio (SINR) criterion. To this end, a model of the constraint relationship among the mutual information (MI), the Kullback-Leibler divergence (KLD), and the SINR is established in the frequency domain. The effects of the SINR value range on maximizing the MI and KLD under the energy constraint are derived. Under the constraints of energy and the SINR, the optimal radar waveform method based on maximizing the MI is proposed for radar estimation, with another method based on maximizing the KLD proposed for radar detection. The maximum MI value range is bounded by SINR and the maximum KLD value range is between 0 and the Jenson-Shannon divergence (J-divergence) value. Simulation results show that under the SINR constraint, the MI-based optimal signal waveform can make full use of the transmitted energy to target information extraction and put the signal energy in the frequency bin where the target spectrum is larger than the clutter spectrum. The KLD-based optimal signal waveform can therefore make full use of the transmitted energy to detect the target and put the signal energy in the frequency bin with the maximum target spectrum.

15.
Photosynth Res ; 141(3): 315-330, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30891662

RESUMO

Better understanding of photosynthetic efficiency under fluctuating light requires a specific approach to characterize the dynamics of energy dissipation in photosystem II. In this study, we characterized the interaction between the regulated YNPQ and non-regulated YNO energy dissipation in outdoor- and indoor-grown sunflower leaves exposed to repetitive cycles of sinusoidal lights of five amplitudes (200, 400, 600, 800, 1000 µmol m-2 s-1) and periods (20, 40, 60, 90, 120 s). The different light cycles induced various patterns of ChlF emission, from which were calculated the complementary quantum yields of photochemical energy conversion YII, light-regulated YNPQ, and non-regulated YNO non-photochemical energy dissipation. During the light cycles, YNO varied in complex but small patterns relative to those of YNPQ, whose variations were mostly mirrored by changes in YII. The YNO patterns could be decomposed by fast Fourier transform into a main (MH) and several upper harmonics (UH). Concerning YNPQ dynamics, they were described by sinusoidal regressions with two components, one constant during the light cycles but increasing with the average light intensity (YNPQc), and one variable (YNPQv). Formation and relaxation of YNPQv followed the intensity of the sinusoidal lights, with lags ranging from 5 to 13 s. These lags decreased with the amplitude of the incident light, and were shorter by 37% in outdoor than indoor leaves. YNPQv and UHs responses to the growth conditions, amplitudes, and the periods of the sinusoidal light were closely correlated (r = 0.939), whereas MH and YNPQc varied similarly (r = 0.803). The analysis of ChlF induced by sinusoidal lights may be a useful tool to better understand the dynamics of energy dissipation in PSII under fluctuating lights.


Assuntos
Helianthus/fisiologia , Helianthus/efeitos da radiação , Luz , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Clorofila/metabolismo , Fluorescência , Análise de Fourier , Processos Fotoquímicos/efeitos da radiação
16.
Proc Natl Acad Sci U S A ; 113(9): 2430-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831072

RESUMO

Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L(-1)) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (-38%), diameter (-5%), and sperm velocity (-23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.


Assuntos
Ostreidae/fisiologia , Plásticos/farmacologia , Poliestirenos/farmacologia , Reprodução/efeitos dos fármacos , Animais , Ostreidae/genética , Ostreidae/metabolismo , Proteoma , Transcriptoma
17.
Sensors (Basel) ; 18(7)2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30011968

RESUMO

The full-duplex transmission protocol has been widely investigated in the literature in order to improve radio spectrum usage efficiency. Unfortunately, due to the effect of imperfect self-interference suppression, the change in transmission power and path loss of non-line-of-sight fading channels will strongly affect performance of full-duplex transmission mode. This entails that the full-duplex transmission protocol is not always a better selection compared to the traditional half-duplex transmission protocol. Considering solar energy-harvesting-powered cognitive radio networks (CRNs), we investigate a joint full-duplex/half-duplex transmission switching scheduling and transmission power allocation in which we utilize the advantages of both half-duplex and full-duplex transmission modes for maximizing the long-term throughput of cognitive radio networks. First, we formulate the transmission rate of half-duplex and full-duplex links for fading channels between cognitive user and base station in which the channel gain is assumed to follow an exponential distribution. Afterward, by considering the availability probability of the primary channel, the limitation of the energy-harvesting capacity of the cognitive user, and the transmission capacity of half-duplex and full-duplex links, we describe the problem in terms of long-term expected throughput. The problem is then solved by adopting the partially observable Markov decision process framework to find the optimal transmission policy for the transmission pair between cognitive user and base station in order to maximize the long-term expected throughput. The optimal policy consists of either the half-duplex or the full-duplex transmission protocols as well as the corresponding amount of transmission energy in each time slot. In addition, to reduce the complexity in formulation and calculation, we also apply the actor⁻critic-based learning method to solve the considered problem. Finally, the performance of the proposed scheme was evaluated by comparing it with a conventional scheme in which the context of energy harvesting and long-term throughput is not considered.

18.
Oecologia ; 183(3): 653-666, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28058504

RESUMO

For migratory species, acquisition and allocation of energy after arrival on the breeding grounds largely determine reproductive decisions. Few studies have investigated underlying physiological mechanisms driving variation in breeding phenology so far. We linked physiological state to individual timing of breeding in pre-laying arctic-nesting female peregrine falcons (Falco peregrinus tundrius). We captured females from two populations 2-20 days before egg-laying to assess plasma concentration of ß-hydroxybutyric acid (BUTY) and triglyceride (TRIG), two metabolites known to reflect short-term changes in fasting and fattening rate, respectively. We also assessed baseline corticosterone (CORTb), a hormone that mediates energy allocation, and the scaled mass index (SMI) as an indicator of somatic body reserves. Plasma BUTY was slightly higher during the pre-recruiting period compared to the period of rapid follicular growth, indicating a reduction in catabolism of lipid reserves before investment in follicle development. Conversely, TRIG levels increased in pre-recruiting females, and best-predicted individual variation in pre-laying interval and lay date. A marked increase in CORTb occurred concomitantly with the onset of rapid follicle growth. SMI was highly variable possibly reflecting variation in food availability or individuals at different stages. Results suggest that (1) lower rates of pre-laying fattening and/or lower mobilization rate of lipoproteins to ovarian follicles delayed laying, and (2) an elevation in pre-laying CORTb may result from, or be required to compensate for, the energetic costs of egg production. Results of this study illustrate how variation in the allocation of energy before laying can influence individual fitness-related reproductive decisions.


Assuntos
Cruzamento , Aves Predatórias , Animais , Regiões Árticas , Corticosterona , Reprodução
19.
Plant Cell Physiol ; 57(7): 1484-1494, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27076397

RESUMO

To analyze changes of energy allocation in PSII at non-steady state photosynthesis, the induction and relaxation of non-photochemical quenching of Chl fluorescence was re-evaluated with the use of Arabidopsis thaliana mutants in which the ability to induce non-photochemical quenching was either enhanced (npq2) or suppressed (npq1 and npq4). When dark-treated leaves of the wild type (WT) were illuminated, very high Φf,D, which represents the loss of excitation energy via non-regulated dissipation, at the beginning of light illumination was gradually decreased to the steady-state level. In contrast, ΦNPQ, representing regulated energy dissipation in PSII, was relatively constant after a significant change in the first 10 min. In npq1 and npq4 mutants, lower ΦNPQ resulted in much higher Φf,D than in the WT. Comparison of npq1 and npq4 mutants showed a kinetic difference of two types of non-photochemical quenching. Because non-photochemical quenching calculated as NPQ = Fm - Fm')/Fm' was determined by the interplay between ΦNPQ and Φf,D, NPQ and ΦNPQ, both of which represent regulatory heat dissipation, were not linearly correlated. We showed that the kinetics of NPQ formation in the light and relaxation in the dark were affected by drastic changes in Φf,D We discuss the nature of a high level of Φf,D at the dark-light transition. We also point out an unavoidable problem of applying the energy allocation model when the Fv/Fm value changes during a photoinhibiotry illumination.


Assuntos
Absorção de Radiação , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Luz , Mutação/genética , Complexo de Proteína do Fotossistema II/metabolismo , Adaptação Fisiológica/efeitos da radiação , Clorofila/metabolismo , Escuridão , Fluorescência , Processos Fotoquímicos/efeitos da radiação , Fotossíntese/efeitos da radiação , Fatores de Tempo
20.
Am Nat ; 187(2): E27-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26807754

RESUMO

Saprotrophic fungi are obliged to spend energy on growth, reproduction, and substrate digestion. To understand the trade-offs involved, we developed a model that, for any given growth rate, identifies the strategy that maximizes the fraction of energy that could possibly be spent on reproduction. Our model's predictions of growth rates and bioconversion efficiencies are consistent with empirical findings, and it predicts the optimal investment in reproduction, resource acquisition, and biomass recycling for a given environment and timescale of reproduction. Thus, if the timescale of reproduction is long compared to the time required for the fungus to double in size, the model suggests that the total energy available for reproduction is maximal when a very small fraction of the energy budget is spent on reproduction. The model also suggests that fungi growing on substrates with a high concentration of low-molecular-weight compounds will not benefit from recycling: they should be able to grow more rapidly and allocate more energy to reproduction without recycling. In contrast, recycling offers considerable benefits to fungi growing on recalcitrant substrates, where the individual hyphae are not crowded and the time taken to consume resource is significantly longer than the fungus doubling time.


Assuntos
Metabolismo Energético , Fungos/fisiologia , Fungos/crescimento & desenvolvimento , Modelos Biológicos , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA