Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
2.
Eur J Clin Microbiol Infect Dis ; 43(7): 1309-1318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700663

RESUMO

PURPOSE: Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-ß-lactamase (MBL) and TEM type ß-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS: The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS: All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION: To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Ceftazidima , Combinação de Medicamentos , Enterobacter cloacae , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Animais , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Humanos , beta-Lactamases/metabolismo , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Quimioterapia Combinada , Mariposas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Modelos Animais de Doenças
3.
BMC Infect Dis ; 24(1): 711, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030479

RESUMO

BACKGROUND: Enterobacter cloacae complex (ECC) including different species are isolated from different human clinical samples. ECC is armed by many different virulence genes (VGs) and they were also classified among ESKAPE group by WHO recently. The present study was designed to find probable association between VGs and antibiotic susceptibility in different ECC species. METHODS: Forty-five Enterobacter isolates that were harvested from different clinical samples were classified in four different species. Seven VGs were screened by PCR technique and antibiotic susceptibility assessment was performed by disk-diffusion assay. RESULT: Four Enterobacter species; Enterobacter cloacae (33.3%), Enterobacter hormaechei (55.6%), Enterobacter kobei (6.7%) and Enterobacter roggenkampii (4.4%) were detected. Minimum antibiotic resistance was against carbapenem agents and amikacin even in MDR isolates. 33.3% and 13.3% of isolates were MDR and XDR respectively. The rpoS (97.8%) and csgD (11.1%) showed maximum and minimum frequency respectively. Blood sample isolated were highly virulent but less resistant in comparison to the other sample isolates. The csgA, csgD and iutA genes were associated with cefepime sensitivity. CONCLUSION: The fepA showed a predictory role for differentiating of E. hormaechei from other species. More evolved iron acquisition system in E. hormaechei was hypothesized. The fepA gene introduced as a suitable target for designing novel anti-virulence/antibiotic agents against E. hormaechei. Complementary studies on other VGs and ARGs and with bigger study population is recommended.


Assuntos
Antibacterianos , Enterobacter cloacae , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Fatores de Virulência , Humanos , Antibacterianos/farmacologia , Enterobacter cloacae/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Enterobacter cloacae/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Fatores de Virulência/genética , Virulência/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Masculino , Feminino
4.
Antimicrob Agents Chemother ; 67(5): e0150522, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195077

RESUMO

Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.


Assuntos
Anti-Infecciosos , Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Carbapenêmicos/farmacologia , Sideróforos/farmacologia , Cefalosporinas/farmacologia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Cefiderocol
5.
BMC Microbiol ; 23(1): 177, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407923

RESUMO

BACKGROUND: The increasing incidence and prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection prevention and disease treatment. However, much remains unknown about the clinical characteristics of CREC isolates. Our objective was to characterize antimicrobial resistance and, carbapenemase production in CREC with 36 CREC isolates collected from a tertiary hospital in Shandong, China. RESULTS: Three types of carbapenemases (NDM, IMP and VIM) were detected in these isolates. Among them, NDM carbapenemases were most prevalent, with a 61.2% (22/36) detection rate for NDM-1, 27.8% (10/36) for NDM-5 and 2.8% (1/36) for NDM-7. IMP-4 was found in two isolates and VIM-1 in only one isolate. The MLST analysis identified 12 different sequence types (STs), of which ST171 (27.8%) was the most prevalent, followed by ST418 (25.0%). ST171 isolates had significantly higher rates of resistance than other STs to gentamicin and tobramycin (Ps < 0.05), and lower rates of resistance to aztreonam than ST418 and other STs (Ps < 0.05). Among 17 carbapenemase-encoding genes, the blaNDM-5 gene was more frequently detected in ST171 than in ST418 and other isolates (Ps < 0.05). In contrast, the blaNDM-1 gene was more frequently seen in ST418 than in ST171 isolates. One novel ST (ST1965) was identified, which carried the blaNDM-1 gene. CONCLUSION: NDM-5 produced by ST171 and NDM-1 carbapenemase produced by ST418 were the leading cause of CREC in this hospital. This study enhances the understanding of CREC strains and helps improve infection control and treatment in hospitals.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Humanos , Enterobacter cloacae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Centros de Atenção Terciária , Tipagem de Sequências Multilocus , Infecções por Enterobacteriaceae/epidemiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , China/epidemiologia , Testes de Sensibilidade Microbiana
6.
Int Microbiol ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37985632

RESUMO

Carbapenem-resistant Enterobacter cloacae complex (CRECC) constitutes a global public health threat challenging clinical treatment and infection control, especially in low- and middle-income countries such as India. We analyzed the antimicrobial susceptibility, major ß-lactamase genes, plasmid profiles, and genetic relatedness to understand the molecular epidemiology of CRECC clinical isolates (n = 44) in West Bengal, India, during 2021-2022. The majority (> 55%) of the isolates were resistant to fluoroquinolones, aminoglycosides, and co-trimoxazole, even > 20% for tigecycline and > 35% were extensively drug-resistant. Co-ß-lactamase production was categorized into twenty-seven types, importantly NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1 (55%), and MIR (27%). The NDM-1 and OXA-181 were major variants with the first observations of NDM-24 and -29 variants in India. Wide-range of plasmids (2 to > 212 kb) were harbored by the ß-lactamase-producing isolates: small (91%), medium (27%), large (9%), and mega (71%). IncX3, ColE1, and HI2 were noted in about 30% of isolates, while IncF and R were carried by < 20% of isolates. The clonally diverse CRECC isolates were noted to cause cross-infections, especially at superficial site, bloodstream, and urinary-tract. This is the first molecular surveillance on CRECC in India. The study isolates serve as the dockyard of NDM, TEM, and CTX-M harboring a wide range of plasmids. The outcomes of the study may strengthen local and national policies for infection prevention and control practices, clarifying the genetic diversity among CRECC. Extensive genomic study may further intersect the relationships between these different plasmids, especially with their sizes, types, and antibiotic resistance markers.

7.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804178

RESUMO

AIM: Carbapenem resistance among Enterobacteriaceae is a serious threat to humans worldwide. This study aims to evaluate the phenotypic and genotypic characterization of carbapenemase-producing Enterobacter cloacae complex (ECC) retrieved from water sources in the central part of Thailand. METHODS AND RESULTS: Samples were collected from water bodies surrounding farms and communities in central Thailand. The species were identified by using MALDI-TOF MS. The minimum inhibitory concentration (MIC) and antibiotic susceptibility were determined. The carbapenemase-producing genes were detected by PCR and whole genome sequencing (WGS). ECC with chromosome-encoded blaIMI-1 carbapenemase were detected. These isolates were resistant to last-resort antibiotics such as carbapenems and colistin as well as penicillin. In addition, all blaIMI-1 genes isolated from this study were found to be associated with chromosomally integrated Xer-dependent integrative mobile elements (IMEXs). CONCLUSION: These findings highlight the diversity and dissemination of carbapenemases-producing Enterobacterales in environmental sources. With the increasing detection of carbapenemase genes worldwide, we should be aware of the blaIMI-producing E. cloacae complex with a high resistance profile and the ability to mobilize within the environment.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Humanos , Enterobacter cloacae/genética , Tailândia , Água , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Genômica , Testes de Sensibilidade Microbiana
8.
Ann Clin Microbiol Antimicrob ; 22(1): 60, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454128

RESUMO

BACKGROUND: Colistin (CST) is a last-line drug for multidrug-resistant Gram-negative bacterial infections. CST-heteroresistant Enterobacter cloacae complex (ECC) has been isolated. However, integrated analysis of epidemiology and resistance mechanisms based on the complete ECC species identification has not been performed. METHODS: Clinical isolates identified as "E. cloacae complex" by MALDI-TOF MS Biotyper Compass in a university hospital in Japan were analyzed. Minimum inhibitory concentrations of CST were determined by the broth microdilution method. The population analysis profiling (PAP) was performed for detecting the heteroresistant phenotype. The heat shock protein 60 (hsp60) cluster was determined from its partial nucleotide sequence. From the data of whole-genome sequencing, average nucleotide identity (ANI) for determining ECC species, multilocus sequence type, core genome single-nucleotide-polymorphism-based phylogenetic analysis were performed. phoPQ-, eptA-, and arnT-deleted mutants were established to evaluate the mechanism underlying colistin heteroresistance. The arnT mRNA expression levels were determined by reverse transcription quantitative PCR. RESULTS: Thirty-eight CST-resistant isolates, all of which exhibited the heteroresistant phenotype by PAP, were found from 138 ECC clinical isolates (27.5%). The prevalence of CST-resistant isolates did not significantly differ among the origin of specimens (29.0%, 27.8%, and 20.2% for respiratory, urine, and blood specimens, respectively). hsp60 clusters, core genome phylogeny, and ANI revealed that the CST-heteroresistant isolates were found in all or most of Enterobacter roggenkampii (hsp60 cluster IV), Enterobacter kobei (cluster II), Enterobacter chuandaensis (clusters III and IX), and Enterobacter cloacae subspecies (clusters XI and XII). No heteroresistant isolates were found in Enterobacter hormaechei subspecies (clusters VIII, VI, and III) and Enterobacter ludwigii (cluster V). CST-induced mRNA upregulation of arnT, which encodes 4-amino-4-deoxy-L-arabinose transferase, was observed in the CST-heteroresistant isolates, and it is mediated by phoPQ pathway. Isolates possessing mcr-9 and mcr-10 (3.6% and 5.6% of total ECC isolates, respectively) exhibited similar CST susceptibility and PAP compared with mcr-negative isolates. CONCLUSIONS: Significant prevalence (approximately 28%) of CST heteroresistance is observed in ECC clinical isolates, and they are accumulated in specific species and lineages. Heteroresistance is occurred by upregulation of arnT mRNA induced by CST. Acquisition of mcr genes contributes less to CST resistance in ECC.


Assuntos
Colistina , Infecções por Enterobacteriaceae , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Enterobacter cloacae , Prevalência , Filogenia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Nucleotídeos , Testes de Sensibilidade Microbiana
9.
Plant Dis ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36774566

RESUMO

Tomato (Solanum lycopersicum L.) is an important greenhouse and field-grown vegetable. During 2019 to 2021, a new bacterial pith necrosis broke out in tomato producing areas in China. The disease incidence rate in the field was approximately 10% to 30% in a few tomato planting areas of Guangdong province, and even 100% in Dianbai distinct, Maoming city. Diseased plants showed yellowing of the lower leaves, brown vascular tissues, and wilting along with brown necrotic spots and a large number of adventitious roots on the stem. Diseased plants were collected, and short fragments of the diseased stems were sterilized with 75% alcohol for 2 minutes, washed with sterile water twice, and stripped the cortex (Fang 1998). Dilutions of xylem specimen soaking solution were plated onto the TTC medium (peptone 10.0 g, acid hydrolyzed casein 1.0 g, glucose 5.0 g, agar 15.0 g, distilled water 1000 mL, 0.5% 2, 3, 5-triphenyltetrazolium chloride, pH7.0), and cultured at 28℃ for 24 h. Three pink single colonies (A2 from Guangzhou (113°21' E, 23°9' N), Guangdong, and K6, and K7 from Maoming (110°55' E, 21°25' N), Guangdong) were selected and purified. Strains A2, K6, and K7 were Gram-negative, motile, and showed white fluidal colonies with pink center on TTC medium, and white, round, and smooth-surface colonies on NA medium (peptone 10 g, beef extract 3 g, sodium chloride 5 g, agar 15 g, distilled water 1000 mL, pH7.0) at 28℃ for 24 h. Three strains could utilize citrate, sorbitol, lactose and arginine, and were negative for methylred reaction test, determination of phenylalanine amino acid deaminase, lysine decarboxylase, urease, soluble starch decomposition and gelatin liquefaction, whereas were positive for Voges-Proskauer test, which conformed to the characteristics of genus Enterobacter (Davin-Regli et al. 2019). To determine the species of the Enterobacter isolates, partial sequences 16S rDNA, gyrB, and rpoB of strain A2, K6, and K7 were amplified. The PCR products were purified, sequenced, and deposited to GenBank. The BLASTN analysis of 16S rDNA, rpoB and gyrB sequences showed strain A2 (MW785888, OL364948, OL364943) was 99.20%, 99.17% and 98.57% identity with E. roggenkampii DSM16690, respectively, strain K6 (MW785890, OL364950, OL364945) was 99.73%, 99.63%, 99.63% identity with E. cloacae complex sp. N13-01531, and strain K7 (MW785893, OL364951, OL364946) was 99.8%, 98.81%, 98.99% identity with the E. roggenkampii Ed-982 and Ek140. Nucleotide sequences of 3 strains were aligned using ClustalW program, and neighbor-joining method (NJ) was used in the construction of a phylogenetic tree using MEGA7 program. Phylogenetic trees based on gyrB sequence, rpoB sequence, and the concatenated sequence of 16S rDNA-rpoB-gyrB and rpoB-gyrB showed strain A2 and K7 were clustered to E. roggenkampii, strain K6 was clustered to E. cloacae complex sp. The roots of tomato material 'Moneymaker' at stage of 4-5 true leaves were cut and irrigated 10 mL bacterial suspension (OD600=0.6) of strains A2, K6, and K7, respectively. As a control, the tomato roots were treated with 10 mL sterile water. All plants were incubated at 30°C. The experiments were conducted with 20 tomato seedlings for each tested strain and control, and repeated twice. All plants inoculated showed yellowing in the lower leaves 6-7 days after inoculation (DAI), subsequently the stems of some plants were rotten, along with bacterial pus in the internodes. The plants wilted, and stems were hollow 20 DAI, which is similar to the field symptoms. No symptoms were observed in control plants. Strains were successfully reisolated from wilting plants, and identified as A2, K6, and K7, respectively, based on gyrB sequence analysis, fulfilling Koch's postulates. Zhou et al. (2021) reported that E. roggenkampii caused bacterial wilt of mulberry in Guangxi, China. Chen et al. (2021) reported E. asburiae caused tomatoes pith necrosis in Fujian and Zhejiang, China. To our knowledge, this is the first report of E. roggenkampii and E. cloacae complex sp. causing bacterial pith necrosis of tomato. Further research would focus on exploring the pathogenic mechanism of the pathogen, and providing reference of controlling the disease.

10.
Antimicrob Agents Chemother ; 66(11): e0077622, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36200761

RESUMO

The Enterobacter cloacae complex (ECC) is a group of diverse environmental and clinically relevant bacterial species associated with a variety of infections in humans. ECC have emerged as one of the leading causes of nosocomial infections worldwide. The purpose of this paper is to evaluate the activity of NOSO-502 and colistin (CST) against a panel of ECC clinical isolates, including different Hoffmann's clusters strains, and to investigate the associated resistance mechanisms. NOSO-502 is the first preclinical candidate of a novel antibiotic class, the odilorhabdins (ODLs). MIC50 and MIC90 of NOSO-502 against ECC are 1 µg/mL and 2 µg/mL, respectively, with a MIC range from 0.5 µg/mL to 32 µg/mL. Only strains belonging to clusters XI and XII showed decreased susceptibility to both NOSO-502 and CST while isolates from clusters I, II, IV, and IX were only resistant to CST. To understand this phenomenon, E. cloacae ATCC 13047 from cluster XI was chosen for further study. Results revealed that the two-component system ECL_01761-ECL_01762 (ortholog of CrrAB from Klebsiella pneumoniae) induces NOSO-502 hetero-resistance by expression regulation of the ECL_01758 efflux pump component (ortholog of KexD from K. pneumoniae) which could compete with AcrB to work with the multidrug efflux pump proteins AcrA and TolC. In E. cloacae ATCC 13047, CST-hetero-resistance is conferred via modification of the lipid A by addition of 4-amino-4-deoxy-l-arabinose controlled by PhoPQ. We identified that the response regulator ECL_01761 is also involved in this resistance pathway by regulating the expression of the ECL_01760 membrane transporter.


Assuntos
Colistina , Enterobacter cloacae , Humanos , Colistina/farmacologia , Colistina/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana
11.
BMC Microbiol ; 22(1): 284, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36443681

RESUMO

BACKGROUND: Enterobacter cloacae complex (ECC) is a common opportunistic pathogen and is responsible for causing various infections in humans. Owing to its inducible chromosomal AmpC ß-lactamase (AmpC), ECC is inherently resistant to the 1st- and 2nd- generation cephalosporins. However, whether ß-lactams antibiotics enhance ECC resistance remains unclear. RESULTS: In this study, we found that subinhibitory concentrations (SICs) of cefazolin (CFZ) and imipenem (IMP) can advance the expression of AmpC and enhance its resistance towards ß-lactams through NagZ in Enterobacter cloacae (EC). Further, AmpC manifested a substantial upregulation in EC in response to SICs of CFZ and IMP. In nagZ knockout EC (ΔnagZ), the resistance to ß-lactam antibiotics was rather weakened and the effect of CFZ and IMP on AmpC induction was completely abrogated. NagZ ectopic expression can rescue the induction effects of CFZ and IMP on AmpC and increase ΔnagZ resistance. More importantly, CFZ and IMP have the potential to induce the expression of AmpR's target genes in a NagZ-dependent manner. CONCLUSIONS: Our findings suggest that NagZ is a critical determinant for CFZ and IMP to promote AmpC expression and resistance and that CFZ and IMP should be used with caution since they may aggravate ECC resistance. At the same time, this study further improves our understanding of resistance mechanisms in ECC.


Assuntos
Cefazolina , Imipenem , Humanos , Antibacterianos/farmacologia , Cefazolina/farmacologia , Enterobacter cloacae/genética , Imipenem/farmacologia , Monobactamas
12.
J Infect Chemother ; 28(12): 1697-1699, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36049614

RESUMO

Amidst the global spread of antimicrobial resistance, New Delhi metallo-ß-lactamase (NDM)-type carbapenemase-producing Enterobacterales (CPE) remain uncommon in Japan, and the detection of such highly drug-resistant organisms is limited to inbound cases. There is little evidence regarding the prevalence of NDM ß-lactamase gene (blaNDM)-harboring CPE in the domestic community, especially in the provincial cities of Japan. Herein, we report the isolation of a blaNDM-1-harboring plasmid in Enterobacter cloacae complex strain isolated from an elderly woman without a history of traveling abroad who had resided in a long-term care facility in Okayama, Japan. The multidrug-resistant blaNDM-harboring CPE isolate was detected in a stool sample of the patient during routine screening at admission. We performed whole-genome sequencing analysis of the isolate using MiSeq (Illumina) and MinION (Oxford Nanopore Technologies) platforms. The isolate was identified as sequence type 171, which has predominantly been reported in the United States and China. The blaNDM-1 gene was encoded on the 46,161 bp IncX3 plasmid, with sequence similarity to plasmids of similar size isolated from individuals in China. Collectively, the genomic data suggest that an imported CPE isolate may have spread among healthy individuals in the regional area of Japan.


Assuntos
Enterobacter cloacae , Assistência de Longa Duração , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterobacter cloacae/genética , Humanos , Japão , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética
13.
Antimicrob Agents Chemother ; 65(8): e0045621, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097486

RESUMO

The qnrE family was designated in 2017. To date, two qnrE alleles have been discovered that are carried by plasmids. Here, we identified a new quinolone resistance gene, qnrE3, in the chromosome of Enterobacter mori clinical isolate 08-091 in China. qnrE3 conferred decreased susceptibility to fluoroquinolones, similar to qnrE1 and qnrE2. To investigate the precise origin of qnrE1, qnrE2, and qnrE3, 79 qnrE-bearing strains producing 30 qnrE variants were retrieved from the NCBI database. Phylogenetic analysis illustrated two major clusters, QnrEEmo and QnrEEas, produced mainly by the E. mori and E. asburiae strains, respectively. Comparison of the genetic context of qnrE alleles demonstrated that qnrE3 and qnrEEas2 alleles presumably were captured by ISEcp1 and mobilized from the E. mori and E. asburiae strains to the E. xiangfangensis and Escherichia coli strains, respectively. qnrEEas2 was proposed to be named qnrE4, since it has spread to another genus. All the qnrE alleles were harbored by the Enterobacter species, except those captured by ISEcp1 and mobilized into other species of Enterobacterales. E. mori is probably the source of qnrE1 to qnrE3 alleles, and E. asburiae is the reservoir of qnrE4.


Assuntos
Quinolonas , Antibacterianos/farmacologia , Enterobacter/genética , Enterobacter cloacae , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Quinolonas/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-33361294

RESUMO

Wastewater treatment plants are considered hot spots for antibiotic resistance. Most studies have addressed the impact on the aquatic environment, as water is an important source of anthropogenic pollutants. Few investigations have been conducted on terrestrial animals living near treatment ponds. We isolated extended-spectrum-ß-lactamase Enterobacter cloacae complex-producing strains from 35 clinical isolates, 29 samples of wastewater, 19 wild animals, and 10 domestic animals living in the hospital sewers and at or near a wastewater treatment plant to study the dissemination of clinically relevant resistance through hospital and urban effluents. After comparison of the antibiotic-resistant profiles of E. cloacae complex strains, a more detailed analysis of 41 whole-genome-sequenced strains demonstrated that the most common sequence type, ST114 (n = 20), was present in human (n = 9) and nonhuman (n = 11) samples, with a close genetic relatedness. Whole-genome sequencing confirmed local circulation of this pathogenic lineage in diverse animal species. In addition, nanopore sequencing and specific synteny of an IncHI2/ST1/blaCTX-M-15 plasmid recovered on the majority of these ST114 clones (n = 18) indicated successful worldwide diffusion of this mobile genetic element.


Assuntos
Enterobacter cloacae , Infecções por Enterobacteriaceae , Animais , Antibacterianos/farmacologia , Enterobacter cloacae/genética , Guadalupe , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Índias Ocidentais , beta-Lactamases/genética
15.
BMC Microbiol ; 21(1): 208, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238225

RESUMO

BACKGROUND: The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. RESULTS: This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. CONCLUSIONS: This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Genes Bacterianos/genética , Plasmídeos/genética
16.
BMC Infect Dis ; 21(1): 611, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174823

RESUMO

BACKGROUND: Carbapenem-resistant Enterobacter cloacae complex (CREC) is a new emerging threat to global public health. The objective of the study was to investigate the clinical characteristics and molecular epidemiology of CREC infections in the medical center of northeast China. METHODS: Twenty-nine patients were infected/colonized with CREC during a ten-year period (2010-2019) by WHONET analysis. Antibiotic susceptibilities were tested with VITEK 2 and micro broth dilution method (for polymyxin B and tigecycline). Carbapenemase encoding genes, ß-lactamase genes, and seven housekeeping genes for MLST were amplified and sequenced for 18 cryopreserved CREC isolates. Maximum likelihood phylogenetic tree was built with the concentrated sequences to show the relatedness between the 18 isolates. RESULTS: There was a rapid increase in CREC detection rate during the ten-year period, reaching 8.11% in 2018 and 6.48% in 2019. The resistance rate of CREC isolates to imipenem and meropenem were 100.0 and 77.8%, however, they showed high sensitivity to tigecycline, polymyxin B and amikacin. The 30-day crude mortality of CREC infection was 17.4%, indicating that it may be a low-virulence bacterium. Furthermore, molecular epidemiology revealed that ST93 was the predominant sequence type followed by ST171 and ST145, with NDM-1 and NDM-5 as the main carbapenemase-encoding genes. Moreover, E. hormaechei subsp. steigerwaltii and E. hormaechei subsp. oharae were the main species, which showed different resistance patterns. CONCLUSION: Rising detection rate of CREC was observed in a tertiary hospital, which showed heterogeneity in drug resistance patterns, resistance genes, and MLST types. Effective infection prevention and control measures should be taken to reduce the spread of CREC.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Carbapenêmicos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Enterobacter cloacae , Infecções por Enterobacteriaceae/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Feminino , História do Século XXI , Humanos , Recém-Nascido , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Centros de Atenção Terciária/estatística & dados numéricos , Adulto Jovem , beta-Lactamases/genética
17.
BMC Infect Dis ; 21(1): 289, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752612

RESUMO

BACKGROUND: Information about the clinical and microbiological characteristics of IMP-producing Enterobacterales has been limited. Here, we describe an institutional outbreak of IMP-producing Enterobacter cloacae complex (ECC) involving multiple clades of ECC sequence type (ST) 78 strains. METHODS: Antimicrobial susceptibility testing, whole-genome sequencing, and conjugation experiments of 18 IMP-producing ECC strains isolated during four-year study period were performed. Species and subspecies were determined by average nucleotide identity analysis and clonal relatedness of the isolates was analyzed with multilocus sequence typing and core-genome single nucleotide polymorphism (SNP) analysis. Relevant clinical information was extracted from medical records. RESULTS: Fourteen of 18 IMP-producing ECC isolates were determined as Enterobacter hormaechei ST78. Sixteen isolates, including 13 isolates belonging to ST78, carried blaIMP-1 in In316-like class 1 integron and also carried IncHI2 plasmids. Conjugation experiments were successful for 12 isolates carrying blaIMP-1 on IncHI2 plasmids and for an isolate carrying blaIMP-11 on an IncL/M plasmid. Although isolation of ST78 strains was clustered in a 14-months period suggesting nosocomial transmission, these strains were subdivided into three clades by SNP analysis: clade A (n = 10), clade B (n = 1), clade C (n = 3). A part of clonal relatedness was unexpected by the epidemiological information at the time of isolation of the strains. Most of the IMP-producing ECC strains were susceptible to non-ß-lactam antibiotics and had relatively low minimum inhibitory concentrations to carbapenems (≤4 µg/mL). Five of six infections caused by IMP-producing ECC were treated successfully. CONCLUSIONS: Whole-genome sequencing analysis revealed the outbreak was caused by three different clades of ST78 strains, where patients had favorable treatment outcome of the infections compared with that caused by Enterobacterales producing other carbapenemases, possibly due to their non-multidrug-resistant phenotype.


Assuntos
Enterobacter cloacae/genética , Infecções por Enterobacteriaceae/diagnóstico , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Surtos de Doenças , Enterobacter/efeitos dos fármacos , Enterobacter/genética , Enterobacter/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Humanos , Integrons/genética , Japão/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Sequenciamento Completo do Genoma , beta-Lactamases/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-32253218

RESUMO

Multidrug-resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV, and C-VIII, have increasingly emerged as a leading cause of health care-associated infections, with colistin used as one of the last lines of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of the PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. The wild-type mgrB gene from Eh22 and that of a clinical strain of Klebsiella pneumoniae used as controls were cloned, and the corresponding recombinant plasmids were used for complementation assays. The results showed a fully restored susceptibility to colistin and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains.


Assuntos
Colistina , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacter , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
19.
Artigo em Inglês | MEDLINE | ID: mdl-32571822

RESUMO

Members of the Enterobacter cloacae complex are important opportunistic human pathogens capable of causing a wide variety of infections. During recent decades, aminoglycoside-resistant E. cloacae complex isolates have increasingly been reported and have become a major concern. Here, we employed high-throughput sequencing in combination with specific PCR assays to investigate the prevalence of aminoglycoside resistance genes among 170 isolates of the E. cloacae complex collected from a teaching hospital in Wenzhou, China. A total of 12 known genes [aphA-1, strA, strB, aac(6')-IIc, aadA2, aac(3)-IId, aadB, aadA1, rmtB, armA, aadA5, and aac(6')-Ie-aph(2'')-Ia] and 1 novel gene [aac(3)-IIg] were identified, with aphA-1 (71.18%), strA (55.29%), and strB (52.35%) being the most prevalent, and aac(3)-IIg was detected with a positive rate of 21.76% (37/170). The aac(3)-IIg gene was 810 bp in length and encoded a protein that shared 72 to 78% identities with previously known AAC(3)-II aminoglycoside 3-N-acetyltransferases. The MICs of gentamicin and tobramycin were 512 µg/ml and 64 µg/ml, respectively, when aac(3)-IIg was cloned into Escherichia coli DH5α. All aac(3)-IIg-positive isolates exerted broad aminoglycoside resistance profiles, mediated by the coexistence of multiple resistance genes. Moreover, aminoglycoside resistance and resistance genes were found to be transferable in most strains (24/37). Nevertheless, pulsed-field gel electrophoresis (PFGE) and dendrogram analysis showed clonal diversity among these isolates. S1 nuclease PFGE, Southern hybridization, and whole-genome sequencing indicated that aac(3)-IIg was located on transferable as well as nontransferable plasmids of various sizes. The analysis of the genetic environment suggested that aac(3)-IIg is embedded within a class 1 integron, with IS26 playing an important role in its mobility.


Assuntos
Aminoglicosídeos , Enterobacter cloacae , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , China , Farmacorresistência Bacteriana/genética , Enterobacter cloacae/genética , Hospitais de Ensino , Humanos , Testes de Sensibilidade Microbiana , Prevalência
20.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32778545

RESUMO

Genome changes are central to the adaptation of bacteria, especially under antibiotic pressure. The aim of this study was to report phenotypic and genomic adaptations undergone by an Enterobacter hormaechei clinical strain that became highly resistant to key antimicrobials during a 4-month period in a patient hospitalized in an intensive care unit (ICU). All six clinical E. hormaechei strains isolated in one ICU-hospitalized patient have been studied. MICs regarding 17 antimicrobial molecules have been measured. Single nucleotide polymorphisms (SNPs) were determined on the sequenced genomes. The expression of genes involved in antibiotic resistance among Enterobacter cloacae complex strains were determined by reverse transcription-quantitative PCR (qRT-PCR). All the strains belonged to sequence type 66 and were distant by a maximum of nine SNPs. After 3 months of hospitalization, three strains presented a significant increase in MICs for ceftazidime, cefepime, temocillin, ertapenem, tigecycline, ciprofloxacin, and chloramphenicol. Those resistant strains did not acquire additional antibiotic resistance genes but harbored a 16-bp deletion in the ramR gene. This deletion led to upregulated expression of RamA, AcrA, AcrB, and TolC and downregulated expression of OmpF. The ΔramR mutant harbored the same phenotype as the resistant clinical strains regarding tigecycline, chloramphenicol, and ciprofloxacin. The increased expression of RamA due to partial deletion in the ramR gene led to a cross-resistance phenotype by an increase of antibiotic efflux through the AcrAB-TolC pump and a decrease of antibiotic permeability by porin OmpF. ramR appears to be an important adaptative trait for E. hormaechei strains.


Assuntos
Antibacterianos , Proteínas de Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Enterobacter , Humanos , Testes de Sensibilidade Microbiana , Tigeciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA