Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Biol Chem ; 299(7): 104923, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321451

RESUMO

Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the ß-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than ß-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and ß2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.


Assuntos
Microtúbulos , Peptídeo Sintases , Tubulina (Proteína) , Animais , Encéfalo/metabolismo , Microtúbulos/metabolismo , Ácido Poliglutâmico/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Peptídeo Sintases/metabolismo
2.
Metab Eng ; 85: 201-212, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197725

RESUMO

In the quest for innovative cancer therapeutics, paclitaxel remains a cornerstone in clinical oncology. However, its complex biosynthetic pathway, particularly the intricate oxygenation steps, has remained a puzzle in the decades following the characterization of the last taxane hydroxylase. The high divergence and promiscuity of enzymes involved have posed significant challenges. In this study, we adopted an innovative approach, combining in silico methods and functional gene analysis, to shed light on this elusive pathway. Our molecular docking investigations using a library of potential ligands uncovered TB574 as a potential missing enzyme in the paclitaxel biosynthetic pathway, demonstrating auspicious interactions. Complementary in vivo assays utilizing engineered S. cerevisiae strains as novel microbial cell factory consortia not only validated TB574's critical role in forging the elusive paclitaxel intermediate, T5αAc-1ß,10ß-diol, but also achieved the biosynthesis of paclitaxel precursors at an unprecedented yield including T5αAc-1ß,10ß-diol with approximately 40 mg/L. This achievement is highly promising, offering a new direction for further exploration of a novel metabolic engineering approaches using microbial consortia. In conclusion, our study not only furthers study the roles of previously uncharacterized enzymes in paclitaxel biosynthesis but also forges a path for pioneering advancements in the complete understanding of paclitaxel biosynthesis and its heterologous production. The characterization of T1ßOH underscores a significant leap forward for future advancements in paclitaxel production using heterologous systems to improve cancer treatment and pharmaceutical production, thereby holding immense promise for enhancing the efficacy of cancer therapies and the efficiency of pharmaceutical manufacturing.


Assuntos
Paclitaxel , Saccharomyces cerevisiae , Paclitaxel/biossíntese , Paclitaxel/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Simulação de Acoplamento Molecular , Engenharia Metabólica , Taxoides/metabolismo , Hidrocarbonetos Aromáticos com Pontes
3.
Prep Biochem Biotechnol ; 54(1): 95-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37167555

RESUMO

Three phase partitioning (TPP) method was effectively utilized for the extraction and purification of milk clotting protease (actinidin) from the kiwifruit pulp. The different purification parameters of TPP such as ammonium sulfate saturation, ratio of the crude kiwifruit extract to tert-butanol, and the pH value of extract were optimized. The 40% (w/v) salt saturation having 1.0:0.75 (v/v) ratio of crude kiwifruit extract to tert-butanol at 6.0 pH value exhibited 3.14 purification fold along with 142.27% recovery, and the protease was concentrated exclusively at intermediate phase (IP). This fraction showed milk-clotting activity (MCA), but there was no such activity in lower aqueous phase (AP). The enzyme molecular weight was found to be 24 kDa from Tricine SDS-PAGE analysis. Recovered protease demonstrated greater stability at pH 7.0 and temperature 50 °C. The Vmax and Km values were 121.9 U/ml and 3.2 mg/ml respectively. Its cysteine nature was demonstrated by inhibition studies. This study highlighted that the TPP is an economic and effective method for extraction and purification of actinidin from kiwifruit, and it could be used as a vegetable coagulant for cheesemaking.


Assuntos
Actinidia , Actinidia/química , terc-Butil Álcool/química , Cisteína Endopeptidases , Peptídeo Hidrolases , Extratos Vegetais
4.
Glycobiology ; 33(6): 490-502, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36504389

RESUMO

Carbohydrate active enzymes are valuable tools in cereal processing to valorize underutilized side streams. By solubilizing hemicellulose and modifying the fiber structure, novel food products with increased nutritional value can be created. In this study, a novel GH5_34 subfamily arabinoxylanase from Herbinix hemicellulosilytica, HhXyn5A, was identified, produced and extensively characterized, for the intended exploitation in cereal processing to solubilize potential prebiotic fibers: arabinoxylo-oligosaccharides. The purified two-domain HhXyn5A (catalytic domain and CBM6) demonstrated high storage stability, showed a melting temperature Tm of 61°C and optimum reaction conditions were determined to 55°C and pH 6.5 on wheat arabinoxylan. HhXyn5A demonstrated activity on various commercial cereal arabinoxylans and produced prebiotic AXOS, whereas the sole catalytic domain of HhXyn5A did not demonstrate detectable activity. HhXyn5A demonstrated no side activity on oat ß-glucan. In contrast to the commercially available homolog CtXyn5A, HhXyn5A gave a more specific HPAEC-PAD oligosaccharide product profile when using wheat arabinoxylan and alkali extracted oat bran fibers as the substrate. Results from multiple sequence alignment of GH5_34 enzymes, homology modeling of HhXyn5A and docking simulations with ligands XXXA3, XXXA3XX and X5 concluded that the active site of HhXyl5A catalytic domain is highly conserved and can accommodate both shorter and longer ligands. However, significant structural dissimilarities between HhXyn5A and CtXyn5A in the binding cleft of CBM6, due to the lack of important ligand-interacting residues, is suggested to cause the observed differences in substrate specificity and product formation.


Assuntos
Prebióticos , Xilanos , Xilanos/química , Avena/metabolismo , Ligantes , Oligossacarídeos/química , Especificidade por Substrato
5.
Purinergic Signal ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999896

RESUMO

Leishmania braziliensis is a pathogenic protozoan parasite that causes American Tegumentary Leishmaniasis (ATL), an important tropical neglected disease. ENTPDases are nucleotidases that hydrolyze intracellular and/or extracellular nucleotides. ENTPDases are known as regulators of purinergic signalling induced by extracellular nucleotides. Leishmania species have two isoforms of ENTPDase, and, particularly, ENTPDase2 seems to be involved in infectivity and virulence. In this study, we conducted the heterologous expression and biochemical characterization of the recombinant ENTPDase2 of L. braziliensis (rLbNTPDase2). Our results show that this enzyme is a canonical ENTPDase with apyrase activity, capable of hydrolysing triphosphate and diphosphate nucleotides, and it is dependent on divalent cations (calcium or magnesium). Substrate specificity was characterized as UDP>GDP>ADP>GTP>ATP=UTP. The enzyme showed optimal activity at a neutral to basic pH and was partially inhibited by suramin and DIDS. Furthermore, the low apparent Km for ADP suggests that the enzyme may play a role in adenosine-mediated signalling. The biochemical characterization of this enzyme can open new avenues for using LbNTPDase2 as a drug target.

6.
Appl Environ Microbiol ; 88(4): e0168021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910563

RESUMO

The marine environment presents great potential as a source of microorganisms that possess novel enzymes with unique activities and biochemical properties. Examples of such are the quorum-quenching (QQ) enzymes that hydrolyze bacterial quorum-sensing (QS) signaling molecules, such as N-acyl-homoserine lactones (AHLs). QS is a form of cell-to-cell communication that enables bacteria to synchronize gene expression in correlation with population density. Searching marine metagenomes for sequences homologous to an AHL lactonase from the phosphotriesterase-like lactonase (PLL) family, we identified new putative AHL lactonases (sharing 30 to 40% amino acid identity to a thermostable PLL member). Phylogenetic analysis indicated that these putative AHL lactonases comprise a new clade of marine enzymes in the PLL family. Following recombinant expression and purification, we verified the AHL lactonase activity for one of these proteins, named moLRP (marine-originated lactonase-related protein). This enzyme presented greater activity and stability at a broad range of temperatures and pH, tolerance to high salinity levels (up to 5 M NaCl), and higher durability in bacterial culture, compared to another PLL member, parathion hydrolase (PPH). The addition of purified moLRP to cultures of Pseudomonas fluorescens inhibited its extracellular protease activity, expression of the protease encoding gene, biofilm formation, and the sedimentation process in milk-based medium. These findings suggest that moLRP is adapted to the marine environment and can potentially serve as an effective QQ enzyme, inhibiting the QS process in Gram-negative bacteria involved in food spoilage. IMPORTANCE Our results emphasize the potential of sequence and structure-based identification of new QQ enzymes from environmental metagenomes, such as from the ocean, with improved stability or activity. The findings also suggest that purified QQ enzymes can present new strategies against food spoilage, in addition to their recognized involvement in inhibiting bacterial pathogen virulence factors. Future studies on the delivery and safety of enzymatic QQ strategy against bacterial food spoilage should be performed.


Assuntos
Pseudomonas fluorescens , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Metagenoma , Filogenia , Pseudomonas/genética , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Percepção de Quorum
7.
Anal Biochem ; 658: 114933, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208685

RESUMO

Omega-transaminases (ω-TAs) have attracted considerable interest for their use in asymmetric synthesis of chiral amines with a high degree of optical purity and yield. The rapid evaluation of the characteristics of newly identified or engineered ω-TAs is important for industrial applications. In this study, a visible spectrophotometric assay was developed for rapid quantitative determination of ω-TA activities based on the transamination of 2-(4-nitrophenyl)ethan-1-amine to generate a red product (E)-N-(4-nitrophenethyl)-2-(4-nitrophenyl)ethen-1-amine. After various co-solvents were evaluated, dimethyl sulfoxide (DMSO) was considered optimal because the red product exhibits good solubility and retains its original color. The red product dissolved in DMSO has its highest absorbance at 465 nm, and its concentration has a good linear relationship with the absorbance. A spectrophotometric assay was established and validated using conventional HPLC analysis (<10% divergence). This method was then used to characterize an ω-TA from thermophilic Geobacillus thermoleovorans and an ω-TA obtained from the metagenome of a soda lake. The results demonstrated that ω-transaminase enzymatic properties could be characterized simply, rapidly, and at low cost, using this newly established visible spectrophotometric assay method.


Assuntos
Dimetil Sulfóxido , Transaminases , Aminas , Solventes
8.
Prep Biochem Biotechnol ; 52(4): 394-403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34355672

RESUMO

Microbial esterases are a highly desirable tool for numerous biosynthetic and biotechnological applications requiring ester bond cleavage. Once identified, microbial esterases are often produced recombinantly in Escherichia coli to enhance yield and ease of purification. In this study a polyhistidine-tagged SGNH esterase gene (AaSGNH1), originating from the cyanobacterium Aphanizomenon flos-aquae, was cloned into an over-expression plasmid and expressed in BL21(DE3) cells. The recombinant esterase enzyme was produced as inactive inclusion bodies which were insoluble in 8 M urea but readily solubilized by the detergent Empigen BB®. Crucially, the procurement of active enzyme required controlled removal of detergent during column chromatography and dialysis steps. The refolded esterase was characterized with respect to its ability to catalyze the cleavage of p-nitrophenol esters of different chain lengths (C2, C8, C16). In addition, the temperature and pH optima were determined and it was found that the enzyme was most active at low temperatures (5-15 °C) and under alkaline conditions (pH 8-10). It was found that the kinetic properties of AaSGNH1 were remarkably similar to other SGNH esterases described thereby validating that the protein was effectively refolded. Overall, this study provides a simple strategy for isolating cold-active recombinant esterase enzyme when expressed as inclusion bodies.


Assuntos
Detergentes , Esterases , Aphanizomenon , Clonagem Molecular , Detergentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/metabolismo , Corpos de Inclusão/química , Proteínas Recombinantes , Diálise Renal
9.
Protein Expr Purif ; 178: 105768, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33035660

RESUMO

κ-Carrageenase (EC3.2.1.83) is a class of glycoside hydrolase, which can be used for hydrolysis of κ-carrageenan to κ-carrageenan oligosaccharides. In this study, a bacterium, identified as Pseudoalteromonas sp. ZDY3 isolated from rotten algae, was capable to degrade κ-carrageenan. The κ-carrageenase produced by Pseudoalteromonas sp. ZDY3 was purified to homogeneity and named as CgkZDY3. The accurate molecular mass of CgkZDY3 was determined through LC-HRMS, and a posttranslational removal of C-terminal end of the protein was discovered. CgkZDY3 had strict hydrolysis specificity to κ-carrageenan, the values of Km and kcat/Km of CgkZDY3 were 3.67 mg mL-1 and 53.0 mL mg-1 s-1, respectively. CgkZDY3 was a cold-adapted κ-carrageenase with excellent storage stability of both the temperature below 35 °C and a wide pH range, and was an endo-type κ-carrageenase with high hydrolysis rate, oligosaccharides with different degrees of polymerization can be obtained by controlling the hydrolysis time, and the final products were κ-neocarrabiose and κ-neocarratetraose. These properties are of great significance for production of κ-carrageenan oligosaccharides with different polymerization degrees under process control.


Assuntos
Aclimatação , Proteínas de Bactérias , Pseudoalteromonas/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Temperatura Baixa , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638918

RESUMO

Mining of phospholipase D (PLD) with altered acyl group recognition except its head group specificity is also useful in terms of specific acyl size phospholipid production and as diagnostic reagents for quantifying specific phospholipid species. Microbial PLDs from Actinomycetes, especially Streptomyces, best fit this process requirements. In the present studies, a new PLD from marine Streptomyces klenkii (SkPLD) was purified and biochemically characterized. The optimal reaction temperature and pH of SkPLD were determined to be 60 °C and 8.0, respectively. Kinetic analysis showed that SkPLD had the relatively high catalytic efficiency toward phosphatidylcholines (PCs) with medium acyl chain length, especially 12:0/12:0-PC (67.13 S-1 mM-1), but lower catalytic efficiency toward PCs with long acyl chain (>16 fatty acids). Molecular docking results indicated that the different catalytic efficiency was related to the increased steric hindrance of long acyl-chains in the substrate-binding pockets and differences in hydrogen-bond interactions between the acyl chains and substrate-binding pockets. The enzyme displayed suitable transphosphatidylation activity and the reaction process showed 26.18% yield with L-serine and soybean PC as substrates. Present study not only enriched the PLD enzyme library but also provide guidance for the further mining of PLDs with special phospholipids recognition properties.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipase D/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Fosfatidilcolinas/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Fosfolipídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Especificidade por Substrato , Temperatura
11.
Plant J ; 100(6): 1254-1272, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448467

RESUMO

Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.


Assuntos
Cupressaceae/enzimologia , Cupressaceae/genética , Cupressaceae/metabolismo , Cycadopsida/genética , Cycadopsida/metabolismo , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Cupressaceae/classificação , Escherichia coli/genética , Evolução Molecular , Fósseis , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Proteínas Recombinantes , Análise de Sequência de Proteína , Transcriptoma
12.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31980430

RESUMO

Unspecific peroxygenases (UPOs) constitute a new family of fungal heme-thiolate enzymes in which there is high biotechnological interest. Although several thousand genes encoding hypothetical UPO-type proteins have been identified in sequenced fungal genomes and other databases, only a few UPO enzymes have been experimentally characterized to date. Therefore, gene screening and heterologous expression from genetic databases are a priority in the search for ad hoc UPOs for oxyfunctionalization reactions of interest. Very recently, Escherichia coli production of a previously described basidiomycete UPO (as a soluble and active enzyme) has been reported. Here, we explored this convenient heterologous expression system to obtain the protein products from available putative UPO genes. In this way, two UPOs from the ascomycetes Collariella virescens (syn., Chaetomium virescens) and Daldinia caldariorum were successfully obtained, purified, and characterized. Comparison of their kinetic constants for oxidation of model substrates revealed 10- to 20-fold-higher catalytic efficiency of the latter enzyme in oxidizing simple aromatic compounds (such as veratryl alcohol, naphthalene, and benzyl alcohol). Homology molecular models of these enzymes showed three conserved and two differing residues in the distal side of the heme (the latter representing two different positions of a phenylalanine residue). Interestingly, replacement of the C. virescens UPO Phe88 by the homologous residue in the D. caldariorum UPO resulted in an F88L variant with 5- to 21-fold-higher efficiency in oxidizing these aromatic compounds.IMPORTANCE UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts.


Assuntos
Chaetomium/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Oxigenases de Função Mista/genética , Xylariales/genética , Chaetomium/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Oxigenases de Função Mista/metabolismo , Xylariales/metabolismo
13.
Biosci Biotechnol Biochem ; 84(11): 2390-2400, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32729393

RESUMO

Maltol derivatives are used in a variety of fields due to their metal-chelating abilities. In the previous study, it was found that cytochrome P450 monooxygenase, P450nov, which has the ability to effectively convert the 2-methyl group in a maltol derivative, transformed 3-benzyloxy-2-methyl-4-pyrone (BMAL) to 2-(hydroxymethyl)-3-(phenylmethoxy)-4H-pyran-4-one (BMAL-OH) and slightly to 3-benzyloxy-4-oxo-4 H-pyran-2-carboxaldehyde (BMAL-CHO). We isolated Pseudomonas nitroreducens SB32154 with the ability to convert BMAL-CHO to BMAL-COOH from soil. The enzyme responsible for aldehyde oxidation, a BMAL-CHO dehydrogenase, was purified from P. nitroreducens SB32154 and characterized. The purified BMAL-CHO dehydrogenase was found to be a xanthine oxidase family enzyme with unique structure of heterodimer composed of 75 and 15 kDa subunits containing a molybdenum cofactor and [Fe-S] clusters, respectively. The enzyme showed broad substrate specificity toward benzaldehyde derivatives. Furthermore, one-pot conversion of BMAL to BMAL-COOH via BMAL-CHO by the combination of the BMAL-CHO dehydrogenase with P450nov was achieved.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Molibdênio , Pseudomonas/química , Pironas/metabolismo , Biocatálise , Oxirredução
14.
J Math Biol ; 81(2): 649-690, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32761360

RESUMO

We investigate how to characterize the kinetic parameters of an aminotransaminase using a non-standard coupled (or auxiliary) enzyme assay, where the peculiarity arises for two reasons. First, one of the products of the auxiliary enzyme is a substrate for the primary enzyme and, second, we explicitly account for the reversibility of the auxiliary enzyme reaction. Using singular perturbation theory, we characterize the two distinguished asymptotic limits in terms of the strength of the reverse reaction, which allows us to determine how to deduce the kinetic parameters of the primary enzyme for a characterized auxiliary enzyme. This establishes a parameter-estimation algorithm that is applicable more generally to similar reaction networks. We demonstrate the applicability of our theory by performing enzyme assays to characterize a novel putative aminotransaminase enzyme, CnAptA (UniProtKB Q0KEZ8) from Cupriavidus necator H16, for two different omega-amino acid substrates.


Assuntos
Ensaios Enzimáticos , Modelos Biológicos , Algoritmos , Cupriavidus necator/enzimologia , Cinética , Transaminases/metabolismo
15.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331245

RESUMO

The characterization of plant enzymes by expression in prokaryotic and eukaryotic (yeast and plants) heterologous hosts has widely been used in recent decades to elucidate metabolic pathways in plant secondary metabolism. Yeast and plant systems provide the cellular environment of a eukaryotic cell and the subcellular compartmentalization necessary to facilitate enzyme function. The expression of candidate genes in these cell systems and the identification of the resulting products guide the way for the identification of enzymes with new functions. However, in many cases, the detected compounds are not the direct enzyme products but are caused by unspecific subsequent reactions. Even if the mechanisms for these unspecific reactions are in many cases widely reported, there is a lack of overview of potential reactions that may occur to provide a guideline for researchers working on the characterization of new enzymes. Here, an across-the-board summary of rearrangement reactions of sesquiterpenes in metabolic pathway engineering is presented. The different kinds of unspecific reactions as well as their chemical and cellular background are explained and strategies how to spot and how to avoid these unspecific reactions are given. Also, a systematic approach of classification of unspecific reactions is introduced. It is hoped that this mini-review will stimulate a discussion on how to systematically classify unspecific reactions in metabolic engineering and to expand this approach to other classes of plant secondary metabolites.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Sesquiterpenos/metabolismo , Produtos Biológicos/metabolismo , Engenharia Metabólica/métodos , Plantas/metabolismo , Sesquiterpenos/química
16.
BMC Biotechnol ; 19(1): 63, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455320

RESUMO

BACKGROUND: In the previous study, the cellulolytic Escherichia coli ZH-4 isolated from bovine rumen was found to show extracellular cellulase activity and could degrade cellulose in the culture. The goal of this work was to identify and characterize the secreted cellulase of E. coli ZH-4. It will be helpful to re-understand E. coli and extend its application in industry. RESULTS: A secreted cellulase was confirmed to be endo-glucanase BcsZ which was encoded by bcsZ gene and located in the cellulose synthase operon bcsABZC in cellulolytic E. coli ZH-4 by western blotting. Characterization of BcsZ indicated that a broad range of pH and temperature tolerance with optima at pH 6.0 and 50 °C, respectively. The apparent Michaelis-Menten constant (Km) and maximal reaction rate (Vmax) for BcsZ were 8.86 mg/mL and 0.3 µM/min·mg, respectively. Enzyme activity of BcsZ was enhanced by Mg2+ and inhibited by Zn2+, Cu2+ and Fe3+. BcsZ could hydrolyze carboxymethylcellulose (CMC) to produce cello-oligosaccharides, cellotriose, cellobiose and glucose. CONCLUSIONS: It is confirmed that extracellular cellulolytic capability of E. coli ZH-4 was attributed to BcsZ, which explained why E. coli ZH-4 can grow on cellulose. The endo-glucanase BcsZ from E. coli-ZH4 has some new characteristics which will extend the understanding of endo-glucanase. Analysis of the secretion characteristics of BcsZ provided a great reference for applying E. coli in multiple industrial fields.


Assuntos
Celulase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Carboximetilcelulose Sódica/farmacologia , Celulase/genética , Cobre/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Ferro/farmacologia , Magnésio/farmacologia , Temperatura , Zinco/farmacologia
17.
J Appl Microbiol ; 127(6): 1706-1715, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31461202

RESUMO

AIMS: The aim of this work was to characterize and apply a polygalacturonase of Penicillium janthinellum new strain VI2R3M. METHODS AND RESULTS: The polygalacturonase obtained from P. janthinellum VI2R3M was incubated in cultures of passion fruit peel and was partially purified by ion-exchange chromatography and gel filtration. The enzyme showed a relative molecular mass of 102·0 kDa, maximum activity at pH 5·0, temperature of 50°C, 100% stablity at 50°C and 80% stablity at pH 3·0-5·0. The apparent Km , Vmax and Kcat values for hydrolyzing polygalacturonic acid were 2·56 mg ml-1 , 163·1 U mg-1 and 277 s-1 respectively. The polygalacturonase presented exo activity and was activated by Mg2+ . The juices treated with polygalacturonase presented increases in transmittance with reduction in colour. CONCLUSIONS: The results suggest that the new lineage P. janthinellum VI2R3M presents a high yield of an exo-polygalacturonase induced by agro-industrial residues, with excellent activity and stability in acidic pH and at 50°C. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of agro-industrial residue to obtain the polygalacturonase can contribute to a decrease enzyme production cost. The results of the activity, stability to acidic pH and excellent performance in the clarification of juices show that the enzyme is promising for industrial application.


Assuntos
Sucos de Frutas e Vegetais , Penicillium/enzimologia , Poligalacturonase/química , Poligalacturonase/metabolismo , Biotecnologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Pectinas/metabolismo , Penicillium/metabolismo , Poligalacturonase/isolamento & purificação , Temperatura
18.
Appl Microbiol Biotechnol ; 103(2): 747-760, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30362077

RESUMO

Bacterial laccases have received considerable attention because of several advantages associated with the higher environmental stability of these enzymes compared with fungal laccases. In this study, a laccase-like gene from Burkholderia cepacia BNS was successfully cloned. This gene was found to encode a mature protein of 279 amino acids that exhibited laccase activity in dimer form. The mature protein was found to contain approximately 4 mol of copper per monomer, and the metal ion-binding sites were predicted. BC_lacL gene transcription levels were analyzed by qRT-PCR to study expression patterns in the presence of different putative inducers (copper ions, guaiacol, veratryl alcohol, vanillin, coniferaldehyde, p-coumaric acid, sinapic acid, and ferulic acid). Copper ions had a positive effect on both transcription levels and intracellular laccase activity. Interestingly, upon induction with sinapic acid, BC_lacL gene transcription was lower than in the presence of copper ions, but laccase activity was highest under these conditions. The BC_lacL protein expressed in Escherichia coli exhibited a specific activity of 7.81 U/mg with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate and 12.3 U/mg with 2,6-dimethoxyphenol (2,6-DMP) as the substrate after purification through Ni-affinity chromatography. The optimal activity and kinetic parameters of the recombinant BC_lacL protein were observed (kcat/Km = 3.96 s-1 µM-1) at a pH of 4.0 at 55 °C for ABTS oxidization and (kcat/Km = 11.6 s-1 µM-1) at a pH of 10.0 at 75 °C for 2,6-DMP oxidization. The protein exhibited high stability in an alkaline environment, with a half-life of more than 12 h. The same results were obtained via decolorization of eight dyes. Hence, this laccase-like enzyme may have potential industrial applications.


Assuntos
Burkholderia cepacia/enzimologia , Burkholderia cepacia/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Expressão Gênica , Lacase/biossíntese , Lacase/genética , Sítios de Ligação , Clonagem Molecular , Coenzimas/análise , Cobre/análise , Ativadores de Enzimas/análise , Escherichia coli/genética , Cinética , Lacase/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
19.
Bioprocess Biosyst Eng ; 42(5): 829-838, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30739160

RESUMO

In the present study, it was presented a strategy to maximize the cutinase production by solid-state fermentation from different microorganisms and substrates. The best results were observed using Fusarium verticillioides, rice bran being the main substrate. Maximum yield of cutinase obtained by the strain was 16.22 U/g. For concentration, ethanol precipitation was used, and the purification factor was 2.4. The optimum temperature and pH for enzyme activity were 35 °C and 6.5, respectively. The enzyme was stable at a wide range of temperature and at all pH values tested. The concentrated cutinase was used as an adjuvant in a formulation containing cutinase + bioherbicide. The use of enzyme increased the efficiency of bioherbicide, since cutinase was responsible to remove/degrade the cutin that recovery the weed leaves and difficult the bioherbicide absorption. Cutinase showed to be a promising product to be used in formulation of bioherbicides.


Assuntos
Hidrolases de Éster Carboxílico , Proteínas Fúngicas , Fusarium/enzimologia , Herbicidas/metabolismo , Controle Biológico de Vetores , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/química , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Herbicidas/química , Concentração de Íons de Hidrogênio , Oryza/química
20.
Appl Microbiol Biotechnol ; 102(16): 6987-6996, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948117

RESUMO

Carbohydrates are the product of carbon dioxide fixation by algae in the ocean. Their polysaccharides are depolymerized by marine bacteria, with a vast array of carbohydrate-active enzymes. These enzymes are important tools to establish biotechnological processes based on algal biomass. Green tides, which cover coastal areas with huge amounts of algae from the genus Ulva, represent a globally rising problem, but also an opportunity because their biomass could be used in biorefinery processes. One major component of their cell walls is the anionic polysaccharide ulvan for which the enzymatic depolymerization remains largely unknown. Ulvan lyases catalyze the initial depolymerization step of this polysaccharide, but only a few of these enzymes have been described. Here, we report the cloning, overexpression, purification, and detailed biochemical characterization of the endolytic ulvan lyase from Formosa agariphila KMM 3901T which is a member of the polysaccharide lyase family PL28. The identified biochemical parameters of the ulvan lyase reflect adaptation to the temperate ocean where the bacterium was isolated from a macroalgal surface. The NaCl concentration has a high influence on the turnover number of the enzyme and the affinity to ulvan. Divalent cations were shown to be essential for enzyme activity with Ca2+ likely being the native cofactor of the ulvan lyase. This study contributes to the understanding of ulvan lyases, which will be useful for future biorefinery applications of the abundant marine polysaccharide ulvan.


Assuntos
Flavobacterium/enzimologia , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Flavobacterium/isolamento & purificação , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA