Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539662

RESUMO

Congenital tufting enteropathy (CTE) is a life-threatening intestinal disorder resulting from loss-of-function mutations in EPCAM and SPINT2. Mice deficient in Spint2, encoding the protease inhibitor HAI-2, develop CTE-like intestinal failure associated with a progressive loss of the EpCAM protein, which is caused by unchecked activity of the serine protease matriptase (ST14). Here, we show that loss of HAI-2 leads to increased proteolytic processing of EpCAM. Elimination of the reported matriptase cleavage site strongly suppressed proteolytic processing of EpCAM in vitro and in vivo. Unexpectedly, expression of cleavage-resistant EpCAM failed to prevent intestinal failure and postnatal lethality in Spint2-deficient mice. In addition, genetic inactivation of intestinal matriptase (St14) counteracted the effect of Spint2 deficiency in mice expressing cleavage-resistant EpCAM, indicating that matriptase does not drive intestinal dysfunction by excessive proteolysis of EpCAM. Interestingly, mice expressing cleavage-resistant EpCAM developed late-onset intestinal defects and exhibited a shortened lifespan even in the presence of HAI-2, suggesting that EpCAM cleavage is indispensable for EpCAM function. Our findings provide new insights into the role of EpCAM and the etiology of the enteropathies driven by Spint2 deficiency.


Assuntos
Insuficiência Intestinal , Animais , Camundongos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Intestinos , Proteínas Secretadas Inibidoras de Proteinases
2.
Biochem Biophys Res Commun ; 696: 149512, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224664

RESUMO

Epithelial cell adhesion molecules (EpCAMs) have been identified as surface markers of proliferating ductal cells, which are referred to as liver progenitor cells (LPCs), during liver regeneration and correspond to malignancies. These cells can differentiate into hepatocytes and biliary epithelial cells (BECs) in vitro. EpCAM-positive LPCs are involved in liver regeneration following severe liver injury; however, the in vivo function of EpCAMs in the regenerating liver remains unclear. In the present study, we used a zebrafish model of LPC-driven liver regeneration to elucidate the function of EpCAMs in the regenerating liver in vivo. Proliferating ductal cells were observed after severe hepatocyte loss in the zebrafish model. Analyses of the liver size as well as hepatocyte and BEC markers revealed successful conversion of LPCs to hepatocytes and BECs in epcam mutants. Notably, epcam mutants exhibited severe defects in intrahepatic duct maturation and bile acid secretion in regenerating hepatocytes, suggesting that epcam plays a critical role in intrahepatic duct reconstruction during LPC-driven liver regeneration. Our findings provide insights into human diseases involving non-parenchymal cells, such as primary biliary cholangitis, by highlighting the regulatory effect of epcam on intrahepatic duct reconstruction.


Assuntos
Colangite , Peixe-Zebra , Animais , Humanos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Fígado/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Hepatócitos/metabolismo , Células Epiteliais/metabolismo , Colangite/patologia , Regeneração Hepática
3.
Microb Pathog ; 188: 106549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281605

RESUMO

The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Eimeria tenella/química , Eimeria tenella/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Galinhas , Proteínas de Protozoários , Fator de Crescimento Epidérmico/metabolismo , Proteínas Recombinantes , Esporozoítos/metabolismo , Coccidiose/veterinária , Coccidiose/parasitologia , Doenças das Aves Domésticas/parasitologia
4.
Cancer Cell Int ; 24(1): 196, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835027

RESUMO

BACKGROUND: Thyroid cancer (TC) is the most common endocrine malignancy. Nowadays, undifferentiated thyroid cancers (UTCs) are still lethal, mostly due to the insurgence of therapy resistance and disease relapse. These events are believed to be caused by a subpopulation of cancer cells with stem-like phenotype and specific tumor-initiating abilities, known as tumor-initiating cells (TICs). A comprehensive understanding of how to isolate and target these cells is necessary. Here we provide insights into the role that the protein Epithelial Cell Adhesion Molecule (EpCAM), a known TICs marker for other solid tumors, may have in TC biology, thus considering EpCAM a potential marker of thyroid TICs in UTCs. METHODS: The characterization of EpCAM was accomplished through Western Blot and Immunofluorescence on patient-derived tissue samples, adherent cell cultures, and 3D sphere cultures of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) cell lines. The frequency of tumor cells with putative tumor-initiating ability within the 3D cultures was assessed through extreme limiting dilution analysis (ELDA). EpCAM proteolytic cleavages were studied through treatments with different cleavages' inhibitors. To evaluate the involvement of EpCAM in inducing drug resistance, Vemurafenib (PLX-4032) treatments were assessed through MTT assay. RESULTS: Variable EpCAM expression pattern was observed in TC tissue samples, with increased cleavage in the more UTC. We demonstrated that EpCAM is subjected to an intense cleavage process in ATC-derived 3D tumor spheres and that the 3D model faithfully mimics what was observed in patient's samples. We also proved that the integrity of the protein appears to be crucial for the generation of 3D spheres, and its expression and cleavage in a 3D system could contribute to drug resistance in thyroid TICs. CONCLUSIONS: Our data provide novel information on the role of EpCAM expression and cleavage in the biology of thyroid TICs, and our 3D model reflects the variability of EpCAM cleavage observed in tissue samples. EpCAM evaluation could play a role in clinical decisions regarding patient therapy since its expression and cleavage may have a fundamental role in the switch to a drug-resistant phenotype of UTC cells.

5.
Respir Res ; 25(1): 317, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160511

RESUMO

RATIONAL: Basal cells (BCs) are bronchial progenitor/stem cells that can regenerate injured airway that, in smokers, may undergo malignant transformation. As a model for early stages of lung carcinogenesis, we set out to characterize cytologically normal BC outgrowths from never-smokers and ever-smokers without cancers (controls), as well as from the normal epithelial "field" of ever-smokers with anatomically remote cancers, including lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) (cases). METHODS: Primary BCs were cultured and expanded from endobronchial brushings taken remote from the site of clinical or visible lesions/tumors. Donor subgroups were tested for growth, morphology, and underlying molecular features by qRT-PCR, RNAseq, flow cytometry, immunofluorescence, and immunoblot. RESULTS: (a) the BC population includes epithelial cell adhesion molecule (EpCAM) positive and negative cell subsets; (b) smoking reduced overall BC proliferation corresponding with a 2.6-fold reduction in the EpCAMpos/ITGA6 pos/CD24pos stem cell fraction; (c) LUSC donor cells demonstrated up to 2.8-fold increase in dysmorphic BCs; and (d) cells procured from LUAD patients displayed increased proliferation and S-phase cell cycle fractions. These differences corresponded with: (i) disparate NOTCH1/NOTCH2 transcript expression and altered expression of potential downstream (ii) E-cadherin (CDH1), tumor protein-63 (TP63), secretoglobin family 1a member 1 (SCGB1A1), and Hairy/enhancer-of-split related with YRPW motif 1 (HEY1); and (iii) reduced EPCAM and increased NK2 homeobox-1 (NKX2-1) mRNA expression in LUAD donor BCs. CONCLUSIONS: These and other findings demonstrate impacts of donor age, smoking, and lung cancer case-control status on BC phenotypic and molecular traits and may suggest Notch signaling pathway deregulation during early human lung cancer pathogenesis.


Assuntos
Brônquios , Proliferação de Células , Neoplasias Pulmonares , Transdução de Sinais , Fumar , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Transdução de Sinais/fisiologia , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Proliferação de Células/fisiologia , Fumar/efeitos adversos , Fumar/metabolismo , Idoso , Brônquios/metabolismo , Brônquios/patologia , Células Cultivadas , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-39249490

RESUMO

PURPOSE: Epithelial cell adhesion molecule (EpCAM) is a potential therapeutic target and anchoring molecule for circulating and disseminated tumour cells (CTC/DTC) in liquid biopsy. In this study, we aimed to construct EpCAM-specific immuno-positron emission tomography (immunoPET) imaging probes and assess the diagnostic abilities in preclinical cancer models. METHODS: By engineering six single-domain antibodies (e.g., EPCD1 - 6) targeting EpCAM of different binding properties and labelling with 68Ga (T1/2 = 1.1 h) and 18F (T1/2 = 110 min), we developed a series of EpCAM-targeted immunoPET imaging probes. The probes' pharmacokinetics and diagnostic accuracies were investigated in cell-derived human colorectal (LS174T) and esophageal cancer (OE19) tumour models. RESULTS: Based on in vitro binding affinities and in vivo pharmacokinetics of the first three tracers ([68Ga]Ga-NOTA-EPCD1, [68Ga]Ga-NOTA-EPCD2, and [68Ga]Ga-NOTA-EPCD3), we selected [68Ga]Ga-NOTA-EPCD3 for tumour imaging which showed an average tumour uptake of 2.06 ± 0.124%ID/g (n = 3) in LS174T cell-derived tumour model. Development and characterisation of [18F]AIF-RESCA-EPCD3 showed comparable tumour uptake of 1.73 ± 0.0471%ID/g (n = 3) in the same tumour model. Further validation of [68Ga]Ga-NOTA-EPCD3 in OE19 cell-derived tumour model showed an average tumour uptake of 4.27 ± 1.16%ID/g and liver uptake of 13.5 ± 1.30%ID/g (n = 3). Near-infrared fluorescence imaging with Cy7-EPCD3 confirmed the in vivo pharmacokinetics and relatively high liver accumulation. We further synthesized another three 18F-labeled nanobody tracers ([18F]AIF-RESCA-EPCD4, [18F]AIF-RESCA-EPCD5, and [18F]AIF-RESCA-EPCD6) and found that [18F]AIF-RESCA-EPCD6 had the best pharmacokinetics with low background. [18F]AIF-RESCA-EPCD6 showed explicit uptake in the subcutaneously inoculated OE19 tumour model with an average uptake of 4.70 ± 0.26%ID/g (n = 3). In comparison, the corresponding tumour uptake (0.17 ± 0.25%ID/g, n = 3) in the EPCD6 blocking group was substantially lower (P < 0.001), indicating the targeting specificity of the tracer. CONCLUSIONS: We developed a series of 68Ga/18F-labeled nanobody tracers targeting human EpCAM. ImmunoPET imaging with [18F]AIF-RESCA-EPCD6 may facilitate better use of EpCAM-targeted therapeutics by noninvasively displaying the target's expression dynamics.

7.
Reprod Biol Endocrinol ; 22(1): 92, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085882

RESUMO

BACKGROUND: Endometriosis is a gynecological disease characterized by the presence of endometrial tissue in abnormal locations, leading to severe symptoms, inflammation, pain, organ dysfunction, and infertility. Surgical removal of endometriosis lesions is crucial for improving pain and fertility outcomes, with the goal of complete lesion removal. This study aimed to analyze the location and expression patterns of poly (ADP-ribose) polymerase 1 (PARP-1), epithelial cell adhesion molecule (EpCAM), and folate receptor alpha (FRα) in endometriosis lesions and evaluate their potential for targeted imaging. METHODS: Gene expression analysis was performed using the Turku endometriosis database (EndometDB). By immunohistochemistry, we investigated the presence and distribution of PARP-1, EpCAM, and FRα in endometriosis foci and adjacent tissue. We also applied an ad hoc platform for the analysis of images to perform a quantitative immunolocalization analysis. Double immunofluorescence analysis was carried out for PARP-1 and EpCAM, as well as for PARP-1 and FRα, to explore the expression of these combined markers within endometriosis foci and their potential simultaneous utilization in surgical treatment. RESULTS: Gene expression analysis revealed that PARP-1, EpCAM, and FOLR1 (FRα gene) are more highly expressed in endometriotic lesions than in the peritoneum, which served as the control tissue. The results of the immunohistochemical study revealed a significant increase in the expression levels of all three biomarkers inside the endometriosis foci compared to the adjacent tissues. Additionally, the double immunofluorescence analysis consistently demonstrated the presence of PARP-1 in the nucleus and the expression of EpCAM and FRα in the cell membrane and cytoplasm. CONCLUSION: Overall, these three markers demonstrate significant potential for effective imaging of endometriosis. In particular, the results emphasize the importance of PARP-1 expression as a possible indicator for distinguishing endometriotic lesions from adjacent tissue. PARP-1, as a potential biomarker for endometriosis, offers promising avenues for further investigation in terms of both pathophysiology and diagnostic-therapeutic approaches.


Assuntos
Endometriose , Molécula de Adesão da Célula Epitelial , Receptor 1 de Folato , Poli(ADP-Ribose) Polimerase-1 , Endometriose/metabolismo , Endometriose/cirurgia , Endometriose/genética , Endometriose/diagnóstico , Endometriose/patologia , Feminino , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Adulto , Biomarcadores/metabolismo , Imuno-Histoquímica , Endométrio/metabolismo , Endométrio/patologia , Endométrio/cirurgia
8.
J Biomed Sci ; 31(1): 72, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010070

RESUMO

BACKGROUND: Epithelial cell adhesion molecule (EpCAM) has been widely studied as a tumor antigen due to its expression in varieties of solid tumors. Moreover, the glycoprotein contributes to critical cancer-associated cellular functionalities via its extracellular (EpEX) and intracellular (EpICD) domains. In colorectal cancer (CRC), EpCAM has been implicated in the Wnt signaling pathway, as EpICD and ß-Catenin are coordinately translocated to the nucleus. Once in the nucleus, EpICD transcriptionally regulates EpCAM target genes that; however, remains unclear whether Wnt signaling is modulated by EpICD activity. METHODS: Patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and various CRC cell lines were used to study the roles of EpCAM and EpICD in Wnt receptor expression. Fluorescence and confocal microscopy were used to analyze tumors isolated from PDX and other xenograft models as well as CRC cell lines. EpCAM signaling was intervened with our humanized form of EpCAM neutralizing antibody, hEpAb2-6. Wnt receptor promoters under luciferase reporters were constructed to examine the effects of EpICD. Luciferase reporter assays were performed to evaluate promoter, γ-secretase and Wnt activity. Functional assays including in vivo tumor formation, organoid formation, spheroid and colony formation experiments were performed to study Wnt related phenomena. The therapeutic potential of EpCAM suppression by hEpAb2-6 was evaluated in xenograft and orthotopic models of human CRC. RESULTS: EpICD interacted with the promoters of Wnt receptors (FZD6 and LRP5/6) thus upregulated their transcriptional activity inducing Wnt signaling. Furthermore, activation of Wnt-pathway-associated kinases in the ß-Catenin destruction complex (GSK3ß and CK1) induced γ-secretase activity to augment EpICD shedding, establishing a positive-feedback loop. Our hEpAb2-6 antibody blocked EpICD-mediated upregulation of Wnt receptor expressions and conferred therapeutic benefits in both PDX and orthotopic models of human CRC. CONCLUSIONS: This study uncovers relevant functions of EpCAM where Wnt receptors are upregulated via the transcriptional co-factor activity of EpICD. The resultant enhancement of Wnt signaling induces γ-secretase activity further stimulating EpICD cleavage and its nuclear translocation. Our humanized anti-EpCAM antibody hEpAb2-6 blocks these mechanisms and may thereby provide therapeutic benefit in CRC.


Assuntos
Neoplasias Colorretais , Molécula de Adesão da Célula Epitelial , Via de Sinalização Wnt , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Camundongos , Animais , Linhagem Celular Tumoral , Progressão da Doença
9.
J Biomed Sci ; 31(1): 81, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164686

RESUMO

BACKGROUND: Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME. METHODS: After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models. RESULTS: We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model. CONCLUSIONS: Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted.


Assuntos
Ácido Betulínico , Neoplasias Colorretais , Molécula de Adesão da Célula Epitelial , Triterpenos Pentacíclicos , Microambiente Tumoral , Neoplasias Colorretais/tratamento farmacológico , Animais , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Triterpenos Pentacíclicos/farmacologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Ratos
10.
Cytopathology ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837279

RESUMO

INTRODUCTION: Morphology is routinely used for detecting malignant cells in body fluids, but it has limitations. Recently, flow cytometry (FCM) is used as an effective tool for studying non-haematological malignancies. The main objective of this study is to standardize a simple and rapid FCM test for the detection of malignant epithelial cells in body fluids. MATERIALS AND METHODS: Body fluids that had been processed for cytology/cytology and FCM were enrolled in this prospective study. We developed a fluorescent-labelled, monoclonal antibody panel composed of cell surface markers for this FCM assay. We compared the results of cytology/cell block and FCM. RESULTS: A total of 121 fluid samples were studied. Comparing the diagnostic performance of cytology/cell block and FCM, 52 (43%) cases were positive and 60 (49.5%) cases were negative for carcinoma cells by both techniques. Nine cases showed discordant results between the two techniques. Six cases were cytology+ but FCM- and three cases were FCM+ cytology-. Clustered Epithelial Cell Adhesion Molecule (EpCAM)-positive events with high scatter properties were definitive for positive diagnosis by FCM. We studied PD-L1 expression in 13 cases by FCM. Six cases were reported as false negative by this FCM assay due to hypocellularity and lack of EpCAM expression in malignant cells. CONCLUSIONS: This FCM assay is simple, easier and cost-effective yielding sensitive results with no inter-observer variability. FCM would become a valuable tool to complement routine diagnostic cytology and reduces misdiagnosis.

11.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627408

RESUMO

New strategies for cancer immunotherapy are needed since most solid tumors do not respond to current approaches. Here we used epithelial cell adhesion molecule EpCAM (a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells) aptamer-linked small-interfering RNA chimeras (AsiCs) to knock down genes selectively in EpCAM+ tumors with the goal of making cancers more visible to the immune system. Knockdown of genes that function in multiple steps of cancer immunity was evaluated in aggressive triple-negative and HER2+ orthotopic, metastatic, and genetically engineered mouse breast cancer models. Gene targets were chosen whose knockdown was predicted to promote tumor neoantigen expression (Upf2, Parp1, Apex1), phagocytosis, and antigen presentation (Cd47), reduce checkpoint inhibition (Cd274), or cause tumor cell death (Mcl1). Four of the six AsiC (Upf2, Parp1, Cd47, and Mcl1) potently inhibited tumor growth and boosted tumor-infiltrating immune cell functions. AsiC mixtures were more effective than individual AsiC and could synergize with anti-PD-1 checkpoint inhibition.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno CD47/genética , Molécula de Adesão da Célula Epitelial/genética , Neoplasias Mamárias Experimentais/terapia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas de Ligação a RNA/genética , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antineoplásicos Imunológicos/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/imunologia , Aptâmeros de Nucleotídeos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/imunologia , Molécula de Adesão da Célula Epitelial/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Imunoterapia/métodos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Fagocitose/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/imunologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/imunologia , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Carga Tumoral/efeitos dos fármacos
12.
Arch Gynecol Obstet ; 309(2): 551-563, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37872452

RESUMO

PURPOSE: Although adenomyosis is a common and benign gynecological disease, the specific pathogenesis of this condition is yet to be fully elucidated. It is difficult to culture primary cells of the ectopic endometrial epithelia and stroma from human adenomyosis lesions. Most of the previous of studies on adenomyosis were based on primary eutopic endometrium cells. However, as yet, no efficient protocols have been developed for the isolation, culture or purification of primary ectopic epithelial and stromal cells from human adenomyosis lesions. Therefore, the present study aimed to develop an efficient protocol for the isolation and culture of primary ectopic epithelial and stromal cells from human adenomyosis lesions. METHODS: In the present study, we aimed to obtain ectopic endometrium tissue from human adenomyosis foci and use a simple and operable type I collagenase digestion method for primary culture. Cells were isolated by sterile cell strainer filtration and flow cytometry was performed to identify, purify, and evaluate the viability of isolated ectopic endometrial cells. RESULTS: Using our method, we successfully isolated and cultured highly purified and active ectopic endometrial epithelial and stromal cells from human adenomyosis foci. Ep-CAM was expressed in ectopic epithelial cells of human adenomyosis with a purity of 93.74% and a viability of 80.58%. In addition, CD10 were robustly expressed by ectopic stromal cells in human adenomyosis. Cellular purity and viability were determined to be 96.37 and 93.49%, respectively. CONCLUSION: Our method provides a new experimental model for studying the molecular pathogenesis of human adenomyosis.


Assuntos
Adenomiose , Endometriose , Feminino , Humanos , Adenomiose/patologia , Endométrio/patologia , Células Estromais , Endometriose/patologia , Células Epiteliais/patologia
13.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928484

RESUMO

Platinum-resistant high-grade serous carcinoma (HGSC) is an incurable disease, so biomarkers that could help with timely treatment adjustments and personalized approach are extensively being sought. Tumor-derived extracellular vesicles (EVs) that can be isolated from ascites and blood of HGSC patients are such promising biomarkers. Epithelial cell adhesion molecule (EpCAM) expression is upregulated in most epithelium-derived tumors; however, studies on prognostic value of EpCAM overexpression in ovarian carcinoma have shown contradictory results. The aim of our study was to evaluate the potential of total and EpCAM-positive EVs as prognostic and predictive biomarkers for advanced HGSC. Flow cytometry was used to determine the concentration of total and EpCAM-positive EVs in paired pretreatment ascites and plasma samples of 37 patients with advanced HGSC who underwent different first-line therapy. We found that higher EpCAM-positive EVs concentration in ascites is associated with shorter progression-free survival (PFS) regardless of treatment strategy. We also found a strong correlation of EpCAM-positive EVs concentration between ascites and plasma. Our findings indicate that EpCAM-positive EVs in ascites of patients with advanced HGSC have the potential to serve as prognostic biomarkers for predicting early recurrence and thereby likelihood of more aggressive tumor biology and development of chemoresistance.


Assuntos
Ascite , Biomarcadores Tumorais , Cistadenocarcinoma Seroso , Molécula de Adesão da Célula Epitelial , Vesículas Extracelulares , Neoplasias Ovarianas , Intervalo Livre de Progressão , Humanos , Molécula de Adesão da Célula Epitelial/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Ascite/metabolismo , Ascite/patologia , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/mortalidade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/mortalidade , Prognóstico , Adulto , Gradação de Tumores
14.
Medicina (Kaunas) ; 60(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929532

RESUMO

Background and Objectives: Hepatocellular carcinoma (HCC) is a prevalent form of malignancy that is characterized by high mortality rates and prognosis that remain suboptimal, largely due to treatment resistance mechanisms. Recent studies have implicated cancer stem cells (CSCs), particularly those expressing epithelial cell adhesion molecule (EpCAM), in HCC progression and resistance. In the present study, we sought to assess EpCAM expression in HCC patients and its correlation with various clinicopathological parameters. Materials and Methods: Tissue samples from 42 HCC patients were subjected to immunohistochemical staining to evaluate EpCAM expression. Clinicopathological data were obtained including the size, grade and stage of tumors, vascular invasion status, alpha-fetoprotein levels, and cirrhosis status. The Chi square and Fisher's exact tests were employed to assess the association between categorical groups. Independent Student-t test or Mann-Whitney U test was used to investigate the association between continuous patient characteristics and survival. Results: Immunohistochemical analysis revealed EpCAM expression in 52.5% of HCC cases. EpCAM-positive tumors exhibited characteristics indicative of aggressive disease, including larger tumor sizes (p = 0.006), greater tumor multiplicity (p = 0.004), higher grades (p = 0.002), more advanced stages (p = 0.003), vascular invasion (p = 0.023), elevated alpha-fetoprotein levels (p = 0.013), and cirrhosis (p = 0.052). Survival analysis demonstrated that EpCAM expression was significantly associated with lower overall rates of survival and higher rates of recurrence in HCC patients. Conclusions: Our findings suggest that EpCAM expression may serve as a prognostic biomarker for HCC with a potential role in patient management. Targeting EpCAM-positive CSCs may represent a promising approach to overcome treatment resistance and improve clinical outcomes in HCC. However, further investigation into the molecular mechanisms underlying EpCAM's role in HCC progression is warranted to facilitate the development of personalized therapeutic interventions.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Molécula de Adesão da Célula Epitelial , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Humanos , Carcinoma Hepatocelular/patologia , Molécula de Adesão da Célula Epitelial/análise , Neoplasias Hepáticas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/análise , Idoso , Adulto , Imuno-Histoquímica , Prognóstico , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo
15.
J Transl Med ; 21(1): 530, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543570

RESUMO

BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is known to highly expression and promotes cancer progression in many cancer types, including colorectal cancer. While metastasis is one of the main causes of cancer treatment failure, the involvement of EpCAM signaling in metastatic processes is unclear. We propose the potential crosstalk of EpCAM signaling with the HGFR signaling in order to govern metastatic activity in colorectal cancer. METHODS: Immunoprecipitation (IP), enzyme-linked immunosorbent assay (ELISA), and fluorescence resonance energy transfer (FRET) was conducted to explore the extracellular domain of EpCAM (EpEX) and HGFR interaction. Western blotting was taken to determine the expression of proteins in colorectal cancer (CRC) cell lines. The functions of EpEX in CRC were investigated by proliferation, migration, and invasion analysis. The combined therapy was validated via a tail vein injection method for the metastasis and orthotopic colon cancer models. RESULTS: This study demonstrates that the EpEX binds to HGFR and induces downstream signaling in colon cancer cells. Moreover, EpEX and HGF cooperatively mediate HGFR signaling. Furthermore, EpEX enhances the epithelial-to-mesenchymal transition and metastatic potential of colon cancer cells by activating ERK and FAK-AKT signaling pathways, and it further stabilizes active ß-catenin and Snail proteins by decreasing GSK3ß activity. Finally, we show that the combined treatment of an anti-EpCAM neutralizing antibody (EpAb2-6) and an HGFR inhibitor (crizotinib) significantly inhibits tumor progression and prolongs survival in metastatic and orthotopic animal models of colon cancer. CONCLUSION: Our findings illuminate the molecular mechanisms underlying EpCAM signaling promotion of colon cancer metastasis, further suggesting that the combination of EpAb2-6 and crizotinib may be an effective strategy for treating cancer patients with high EpCAM expression.


Assuntos
Neoplasias do Colo , Animais , Molécula de Adesão da Célula Epitelial/metabolismo , Crizotinibe , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Transdução de Sinais , Transição Epitelial-Mesenquimal , Movimento Celular
16.
Artigo em Inglês | MEDLINE | ID: mdl-37642704

RESUMO

PURPOSE: Fluorescence-guided surgery (FGS) can play a key role in improving radical resection rates by assisting surgeons to gain adequate visualization of malignant tissue intraoperatively. Designed ankyrin repeat proteins (DARPins) possess optimal pharmacokinetic and other properties for in vivo imaging. This study aims to evaluate the preclinical potential of epithelial cell adhesion molecule (EpCAM)-binding DARPins as targeting moieties for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of cancer. METHODS: EpCAM-binding DARPins Ac2, Ec4.1, and non-binding control DARPin Off7 were conjugated to IRDye 800CW and their binding efficacy was evaluated on EpCAM-positive HT-29 and EpCAM-negative COLO-320 human colon cancer cell lines. Thereafter, NIRF and PA imaging of all three conjugates were performed in HT-29_luc2 tumor-bearing mice. At 24 h post-injection, tumors and organs were resected and tracer biodistributions were analyzed. RESULTS: Ac2-800CW and Ec4.1-800CW specifically bound to HT-29 cells, but not to COLO-320 cells. Next, 6 nmol and 24 h were established as the optimal in vivo dose and imaging time point for both DARPin tracers. At 24 h post-injection, mean tumor-to-background ratios of 2.60 ± 0.3 and 3.1 ± 0.3 were observed for Ac2-800CW and Ec4.1-800CW, respectively, allowing clear tumor delineation using the clinical Artemis NIRF imager. Biodistribution analyses in non-neoplastic tissue solely showed high fluorescence signal in the liver and kidney, which reflects the clearance of the DARPin tracers. CONCLUSION: Our encouraging results show that EpCAM-binding DARPins are a promising class of targeting moieties for pan-carcinoma targeting, providing clear tumor delineation at 24 h post-injection. The work described provides the preclinical foundation for DARPin-based bimodal NIRF/PA imaging of cancer.

17.
BMC Cancer ; 23(1): 1220, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082377

RESUMO

OBJECTIVE: The aim of this study is to evaluate an AAV vector that can selectively target breast cancer cells and to investigate its specificity and anti-tumor effects on breast cancer cells both in vitro and in vivo, offering a new therapeutic approach for the treatment of EpCAM-positive breast cancer. METHODS: In this study, a modified AAV2 viral vector was used, in which EpCAM-specific DARPin EC1 was fused to the VP2 protein of AAV2, creating a viral vector that can target breast cancer cells. The targeting ability and anti-tumor effects of this viral vector were evaluated through in vitro and in vivo experiments. RESULTS: The experimental results showed that the AAV2MEC1 virus could specifically infect EpCAM-positive breast cancer cells and accurately deliver the suicide gene HSV-TK to tumor tissue in mice, significantly inhibiting tumor growth. Compared to the traditional AAV2 viral vector, the AAV2MEC1 virus exhibited reduced accumulation in liver tissue and had no impact on tumor growth. CONCLUSION: This study demonstrates that AAV2MEC1 is a gene delivery vector capable of targeting breast cancer cells and achieving selective targeting in mice. The findings offer a potential gene delivery system and strategies for gene therapy targeting EpCAM-positive breast cancer and other tumor types.


Assuntos
Neoplasias da Mama , Proteínas de Repetição de Anquirina Projetadas , Humanos , Camundongos , Animais , Feminino , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Dependovirus/genética , Dependovirus/metabolismo
18.
Liver Int ; 43(9): 1909-1919, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288714

RESUMO

BACKGROUND AND AIMS: Extracellular vesicles (EVs) have emerged as a potential source of circulating biomarkers in liver disease. We evaluated circulating AV+ EpCAM+ CD133+ EVs as a potential biomarker of the transition from simple steatosis to steatohepatitis. METHODS: EpCAM and CD133 liver proteins and EpCAM+ CD133+ EVs levels were analysed in 31 C57BL/6J mice fed with a chow or high fat, high cholesterol and carbohydrates diet (HFHCC) for 52 weeks. The hepatic origin of MVs was addressed using AlbCrexmT/mG mice fed a Western (WD) or Dual diet for 23 weeks. Besides, we assessed plasma MVs in 130 biopsy-proven NAFLD patients. RESULTS: Hepatic expression of EpCAM and CD133 and EpCAM+ CD133+ EVs increased during disease progression in HFHCC mice. GFP+ MVs were higher in AlbCrexmT/mG mice fed a WD (5.2% vs 12.1%) or a Dual diet (0.5% vs 7.3%). Most GFP+ MVs were also positive for EpCAM and CD133 (98.3% and 92.9% respectively), suggesting their hepatic origin. In 71 biopsy-proven NAFLD patients, EpCAM+ CD133+ EVs were significantly higher in those with steatohepatitis compare to those with simple steatosis (286.4 ± 61.9 vs 758.4 ± 82.3; p < 0.001). Patients with ballooning 367 ± 40.6 vs 532.0 ± 45.1; p = 0.01 and lobular inflammation (321.1 ± 74.1 vs 721.4 ± 80.1; p = 0.001), showed higher levels of these EVs. These findings were replicated in an independent cohort. CONCLUSIONS: Circulating levels of EpCAM+ CD133+ MVs in clinical and experimental NAFLD were increased in the presence of steatohepatitis, showing high potential as a non-invasive biomarker for the evaluation and management of these patients.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores , Modelos Animais de Doenças , Dieta Hiperlipídica
19.
Mikrochim Acta ; 191(1): 64, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157059

RESUMO

A "turn-on" aptasensor for label-free and cell-free EpCAM detection was constructed by employing magnetic α-Fe2O3/Fe3O4@Au nanocomposites as a matrix for signal amplification and double-stranded complex (SH-DNA/Apt probes) immobilization through Au-S binding. α-Fe2O3/Fe3O4@Au could be efficiently assembled into uniform and stable self-assembly films via magnetic-induced self-assembly technique on a magnetic glassy carbon electrode (MGCE). The effectiveness of the platform for EpCAM detection was confirmed through differential pulse voltammetry (DPV). Under optimized conditions, the platform exhibited excellent specificity for EpCAM, and a strong linear correlation was observed between the current and the logarithm of EpCAM protein concentration in the range 1 pg/mL-1000 pg/mL (R2 = 0.9964), with a limit of detection (LOD) of 0.27 pg/mL. Furthermore, the developed platform demonstrated good stability during a 14-day storage test, with fluctuations remaining below 93.33% of the initial current value. Promising results were obtained when detecting EpCAM in spiked serum samples, suggesting its potential as a point-of-care (POC) testing.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Molécula de Adesão da Célula Epitelial , Técnicas Biossensoriais/métodos , Limite de Detecção , Eletrodos
20.
Nano Lett ; 22(24): 9935-9942, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480429

RESUMO

Epithelial cell adhesion molecules (EpCAMs) play pivotal roles in tumorigenesis in many cancer types, which is reported to reside within nano- to microscale membrane domains, forming small clusters. We propose that building multivalent ligands that spatially patch to EpCAM clusters may largely enhance their targeting capability. Herein, we assembled EpCAM aptamers into nanoscale arrays of prescribed valency and spatial arrangements by using a rectangular DNA pegboard. Our results revealed that EpCAM aptamer arrays exhibited significantly higher binding avidity to MCF-7 cells than free monovalent aptamers, which was affected by both valency and spatial arrangement of aptamers. Furthermore, EpCAM aptamer arrays showed improved tolerance against competing targets in an extracellular environment and potent bioavailability and targeting specificity in a xenograft tumor model in mice. This work may shed light on rationally designing multivalent ligand complexes of defined parameters with optimized binding avidity and targeting capability toward various applications in the biomedical fields.


Assuntos
Aptâmeros de Nucleotídeos , Humanos , Animais , Camundongos , Molécula de Adesão da Célula Epitelial , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Disponibilidade Biológica , Células MCF-7 , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA