Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Genet Metab ; 143(1-2): 108567, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39236565

RESUMO

While the identification and diagnosis of congenital disorders of glycosylation (CDG) have rapidly progressed, the available treatment options are still quite limited. Mostly, we are only able to manage the disease symptoms rather than to address the underlying cause. However, recent years have brought about remarkable advances in treatment approaches for some CDG. Innovative therapies, targeting both the root cause and resulting manifestations, have transitioned from the research stage to practical application. The present paper aims to provide a detailed overview of these exciting developments and the rising concepts that are used to treat these ultra-rare diseases.

2.
Muscle Nerve ; 69(4): 498-503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294129

RESUMO

INTRODUCTION/AIMS: Oxaliplatin is a platinum-based anti-cancer drug widely used in colorectal cancer patients, but it may cause peripheral neuropathy. As one of the main causes of oxaliplatin-induced peripheral neuropathy (OPN) is oxidative stress, which is also a key factor causing diabetic peripheral neuropathy (DPN), the aim of this study was to evaluate the preventive effects of alpha-lipoic acid (ALA) and epalrestat (EP), which are used for the treatment of DPN, in an OPN zebrafish model. METHODS: Tg(nbt:dsred) transgenic zebrafish, with sensory nerves in the peripheral lateral line, were treated with oxaliplatin, oxaliplatin/EP, and oxaliplatin/ALA for 4 days. A confocal microscope was used to visualize and quantify the number of axon bifurcations in the distal nerve ending. To analyze the formation of synapses on sensory nerve terminals, quantification of membrane-associated guanylate kinase (MAGUK) puncta was performed using immunohistochemistry. RESULTS: The number of axon bifurcations and intensity of MAGUK puncta were significantly reduced in the oxaliplatin-treated group compared with those in the embryo medium-treated group. In both the oxaliplatin/EP and oxaliplatin/ALA-treated groups, the number of axon bifurcations and intensity of MAGUK puncta were greater than those in the oxaliplatin-treated group (p < .0001), and no significant difference was observed between larvae treated with oxaliplatin/ALA 1 µM and oxaliplatin/EP 1 µM (p = .4292). DISCUSSION: ALA and EP have protective effects against OPN in zebrafish. Our findings show that ALA and EP can facilitate more beneficial treatment for OPN.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Rodanina/análogos & derivados , Tiazolidinas , Ácido Tióctico , Animais , Humanos , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Peixe-Zebra , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Antineoplásicos/toxicidade
3.
J Transl Med ; 21(1): 700, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805545

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a progressive and inflammatory subtype of nonalcoholic fatty liver disease (NAFLD) characterized by hepatocellular injury, inflammation, and fibrosis in various stages. More than 20% of patients with NASH will progress to cirrhosis. Currently, there is a lack of clinically effective drugs for treating NASH, as improving liver histology in NASH is difficult to achieve and maintain through weight loss alone. Hence, the present study aimed to investigate potential therapeutic drugs for NASH. METHODS: BMDMs and THP1 cells were used to construct an inflammasome activation model, and then we evaluated the effect of epalrestat on the NLRP3 inflammasome activation. Western blot, real-time qPCR, flow cytometry, and ELISA were used to evaluate the mechanism of epalrestat on NLRP3 inflammasome activation. Next, MCD-induced NASH models were used to evaluate the therapeutic effects of epalrestat in vivo. In addition, to evaluate the safety of epalrestat in vivo, mice were gavaged with epalrestat daily for 14 days. RESULTS: Epalrestat, a clinically effective and safe drug, inhibits NLRP3 inflammasome activation by acting upstream of caspase-1 and inducing ASC oligomerization. Importantly, epalrestat exerts its inhibitory effect on NLRP3 inflammasome activation by inhibiting the activation of aldose reductase. Further investigation revealed that the administration of epalrestat inhibited NLRP3 inflammasome activation in vivo, alleviating liver inflammation and improving NASH pathology. CONCLUSIONS: Our study indicated that epalrestat, an aldose reductase inhibitor, effectively suppressed NLRP3 inflammasome activation in vivo and in vitro and might be a new therapeutic approach for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Aldeído Redutase/uso terapêutico , Inflamação , Fibrose , Camundongos Endogâmicos C57BL
4.
Mol Divers ; 27(4): 1713-1733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36103032

RESUMO

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.


Assuntos
Aldeído Redutase , Hidrazonas , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Hidrazonas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Benzaldeídos/farmacologia
5.
Drug Chem Toxicol ; : 1-11, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37795621

RESUMO

Inhibiting aldose reductase (ALR2, AR) as well as maintaining a concomitant antioxidant (AO) activity via dual-acting agents may be a rational approach to prevent cellular glucotoxicity and at least delay the progression of diabetes mellitus (DM). This study was aimed at evaluating the dual-acting AR inhibitor (ARI) cemtirestat (CMTI) on tissue oxidative stress (OS) and carbonyl stress (CS) biomarkers in rats exposed to fructose alone (F) or fructose plus streptozotocin (D; type-2 diabetic). D and F rats were either untreated or treated daily with low- or high-dose CMTI, ARI drug epalrestat (EPA) or antioxidant stobadine (STB) for 14 weeks. Malondialdehyde (MDA), glutathione S-transferase (GST), nitric oxide synthase (NOS), and catalase (CAT) were increased in the sciatic nerve of F and D. These increases were attenuated by low doses of CMTI and STB in D, but exacerbated by low-dose EPA and high-dose CMTI in F. STB and CMTI and to a lesser extent EPA improved MDA, protein-carbonyl, GST and CAT in the hearts and lungs of F and D. CMTI and STB were more effective than EPA in improving the increased MDA and protein-carbonyl levels in the kidneys of F and especially D. CMTI ameliorated renal GST inhibition in D. In the lungs, hearts, and kidneys of F and D, the GSH to GSSG ratio decreased and caspase-3 activity increased, but partially resolved with treatments. In conclusion, CMTI with ARI/AO activity may be advantageous in overcoming OS, CS, and their undesirable consequences, with low dose efficacy and limited toxicity, compared to ARI or antioxidant alone.

6.
Small ; 18(16): e2107690, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277914

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal subtypes of breast cancer. Although chemotherapy is considered the most effective strategy for TNBC, most chemotherapeutics in current use are cytotoxic, meaning they target antiproliferative activity but do not inhibit tumor cell metastasis. Here, a TNBC-specific targeted liposomal formulation of epalrestat (EPS) and doxorubicin (DOX) with synergistic effects on both tumor cell proliferation and metastasis is described. These liposomes are biocompatible and effectively target tumor cells owing to hyaluronic acid (HA) modification on their surface. This active targeting, mediated by CD44-HA interaction, allows DOX and EPS to be delivered simultaneously to tumor cells in vivo, where they suppress not only TNBC tumor growth and the epithelial-mesenchymal transition, but also cancer stem cells, which collectively suppress tumor growth and metastasis of TNBC and may also act to prevent relapse of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Ácido Hialurônico , Lipossomos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
7.
Drug Dev Res ; 83(3): 586-604, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34585414

RESUMO

A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.


Assuntos
Aldeído Redutase , Inibidores Enzimáticos , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Quinazolinonas , Relação Estrutura-Atividade
8.
J Pharmacol Sci ; 147(1): 1-8, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294359

RESUMO

Tyrosine kinase inhibitors (TKIs) are widely utilized in clinical practice to treat carcinomas, but secondary tumor resistance during chronic treatment can be problematic. AKR1B1 and AKR1B10 of the aldo-keto reductase (AKR) superfamily are highly expressed in cancer cells and are believed to be involved in drug resistance. The aim of this study was to understand how TKI treatment of chronic myelogenous leukemia (CML) cells changes their glucose metabolism and if inhibition of AKRs can sensitize CML cells to TKIs. K562 cells were treated with the TKIs imatinib, nilotinib, or bosutinib, and the effects on glucose metabolism, cell death, glutathione levels, and AKR levels were assessed. To assess glucose dependence, cells were cultured in normal and low-glucose media. Pretreatment with AKR inhibitors, including epalrestat, were used to determine AKR-dependence. Treatment with TKIs increased intracellular glucose, AKR1B1/10 levels, glutathione oxidation, and nuclear translocation of nuclear factor erythroid 2-related factor 2, but with minimal cell death. These effects were dependent on intracellular glucose accumulation. Pretreatment with epalrestat, or a selective inhibitor of AKR1B10, exacerbated TKI-induced cell death, suggesting that especially AKR1B10 was involved in protection against TKIs. Thus, by disrupting cell protective mechanisms, AKR inhibitors may render CML more susceptible to TKI treatments.


Assuntos
Aldo-Ceto Redutases/antagonistas & inibidores , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Aldeído Redutase , Aldo-Ceto Redutases/metabolismo , Aldo-Ceto Redutases/fisiologia , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glucose/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Rodanina/análogos & derivados , Rodanina/farmacologia , Rodanina/uso terapêutico , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico
9.
Bioorg Chem ; 108: 104556, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376013

RESUMO

Herein, a quantum mechanics/molecular mechanics (QM/MM) based biotransformation study was performed on synthetically feasible mutual-prodrugs of epalrestat which have been identified from an in-house database developed by us. These prodrugs were submitted to quantum polarized ligand docking (QPLD) with the CES1 enzyme followed by MM-GBSA calculation. Electronic aspects of transition state of these prodrugs were also considered to study the catalytic process through density functional theory (DFT). ADMET analysis of prodrugs was then carried out to assess the drug-likeness. On the basis of in-silico results, the best five prodrugs were synthesized and further evaluated for their neuroprotective and nephroprotective potential in high-fat diet-streptozotocin (HFD-STZ) induced diabetes in rat model. Clinically relevant molecular manifestations of diabetic complications (DC) including aldose reductase (ALR2) activity and oxidative stress markers such as reduced glutathione (GSH), catalase (CAT), and thiobarbituric acid reactive substances (TBARS) were determined in blood plasma as well as tissues of the brain and kidneys. The histopathological examination of these organs was also carried out to see the improvement in structural deformities caused due to neuropathy and nephropathy. Finally, in-vivo pharmacokinetic study was performed for the best two prodrugs to assess the improvement in biopharmaceutical attributes of parent drugs. Overall, EP-G-MFA and EP-MFA have significantly reduced the hyperglycemia-induced ALR2 activity, levels of oxidative stress markers, and manifested about a two-fold increase in the biological half-life (T1/2) of parent drugs. The overall findings of this study suggest that methyl ferulate conjugated prodrugs of epalrestat may be considered as potential protective agents in diabetic neuropathy and nephropathy.


Assuntos
Teoria da Densidade Funcional , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/farmacologia , Pró-Fármacos/farmacologia , Rodanina/análogos & derivados , Tiazolidinas/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Masculino , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ratos , Ratos Wistar , Rodanina/síntese química , Rodanina/química , Rodanina/farmacologia , Estreptozocina , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química
10.
Bioorg Chem ; 117: 105473, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768205

RESUMO

Aldose reductase (ALR2), one of the metabolically important enzymes, catalyzes the formation of sorbitol from glucose in the polyol pathway. ALR2 inhibition is required to prevent diabetic complications. In the present study, the novel bis-hydrazone compounds bearing isovanillin moiety (GY1-12) were synthesized, and various chromatographic methods were applied to purify the ALR2 enzyme. Afterward, the inhibitory effect of the synthesized compounds on the ALR2 was screened in vitro. All the novel bis-hydrazones demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 12.55-35.04 nM, and 13.38-88.21 nM, respectively. Compounds GY-11, GY-7, and GY-5 against ALR2 were identified as the highly potent inhibitors, respectively, and were superior to the standard drug, epalrestat. Moreover, a comprehensive ligand-receptor interactions prediction was performed using ADME-Tox, Glide XP, and MM-GBSA modules of Schrödinger Small-Molecule Drug Discovery Suite to elucidate the novel bis-hydrazone derivatives, potential binding modes versus the ALR2. As a result, these compounds with ALR2 inhibitory effects may be potential alternative agents that can be used to treat or prevent diabetic complications.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Benzaldeídos/farmacologia , Inibidores Enzimáticos/farmacologia , Hidrazonas/farmacologia , Aldeído Redutase/metabolismo , Benzaldeídos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Allergol Immunopathol (Madr) ; 49(5): 1-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34476915

RESUMO

INTRODUCTION AND OBJECTIVES: Lipopolysaccharide (LPS) is a potent inducer of inflammatory response. Inflammation is a major risk factor for many diseases. Regulation of inflammatory mediator and pro-inflammatory cytokine levels could be a potential therapeutic approach to treat inflammatory injury. The purpose of the present study was to determine whether epalrestat (EPS), which is used for the treatment of diabetic neuropathy, suppresses inflammatory response in LPS-stimulated RAW264.7 cells. MATERIAL AND METHODS: The effects of EPS at near-plasma concentration on the levels of pro-inflammatory cytokines and inflammatory mediators was examined using by MTS assay, quantitative RT-PCR analysis, and western blotting in LPS-stimulated RAW264.7 cells. RESULTS: EPS suppressed mRNA and protein expression levels of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNFα, in RAW264.7 cells stimulated with LPS. EPS also affected inflammatory mediators such as iNOS and NF-κB in LPS-stimulated RAW264.7 cells. CONCLUSIONS: In this study, we demonstrated for the first time that EPS suppresses inflammatory response in LPS-stimulated RAW264.7 cells. From these results, we propose that targeting the regulation of pro-inflammatory cytokine levels and inflammatory mediators by EPS is a promising therapeutic approach to treat inflammatory injury. It is expected that EPS, whose safety and pharmacokinetics have been confirmed clinically, would be useful for the treatment of inflammatory diseases.


Assuntos
Mediadores da Inflamação , Lipopolissacarídeos , Animais , Citocinas , Inflamação/tratamento farmacológico , Camundongos , Óxido Nítrico , Células RAW 264.7 , Rodanina/análogos & derivados , Tiazolidinas
12.
Mol Biol Rep ; 47(8): 6091-6103, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32761301

RESUMO

Cervical cancer is the leading cause of cancer-related death among women worldwide. Identifying an effective treatment with fewer side effects is imperative, because all of the current treatments have unique disadvantages. Aldo-keto reductase family 1 member B1 (AKR1B1) is highly expressed in various cancers and is associated with tumor development, but has not been studied in cervical cancer. In the current study, we used CRISPR/Cas9 technology to establish a stable HeLa cell line with AKR1B1 knockout. In vitro, AKR1B1 knockout inhibited the proliferation, migration and invasion of HeLa cells, providing evidence that AKR1B1 is an innovative therapeutic target. Notably, the clinically used epalrestat, an inhibitor of aldose reductases, including AKR1B1, had the same effect as AKR1B1 knockout on HeLa cells. This result suggests that epalrestat could be used in the clinical treatment of cervical cancer, a prospect that undoubtedly requires further research. Moreover, aiming to determine the underlying regulatory mechanism of AKR1B1, we screened a series of differentially regulated genes (DEGs) by RNA sequencing and verified selected DEGs by quantitative RT-PCR. In addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs revealed a correlation between AKR1B1 and cancer. In summary, epalrestat inhibits the progression of cervical cancer by inhibiting AKR1B1, and thus may be a new drug for the clinical treatment of cervical cancer.


Assuntos
Aldeído Redutase/fisiologia , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/fisiologia , Rodanina/análogos & derivados , Tiazolidinas/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/genética , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Ontologia Genética , Células HeLa , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/farmacologia , Rodanina/farmacologia , Ensaio Tumoral de Célula-Tronco , Neoplasias do Colo do Útero/patologia
13.
Nervenarzt ; 91(8): 714-721, 2020 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-32647958

RESUMO

BACKGROUND: Half of all diabetics are affected by a diabetic neuropathy. Microangiopathy, dysfunctional Schwann cell interactions, accumulation of toxic metabolites, and inflammatory processes all contribute to nerve damage. OBJECTIVE: Overview and perspectives of the pathophysiology as well as the current and future treatment implications. METHODS: Literature search (1990-2020). RESULTS: Clinically predominant are sensory and autonomic symptoms; however, muscle weakness can occur as well. Complications such as unrecognized myocardial infarctions and the diabetic foot syndrome are potentially life-threatening and can cause major disability. The pathophysiology of neuropathies in type 1 and type 2 diabetes mellitus differs due to additional risk factors of the metabolic syndrome. To reduce the risk of neuropathy, an intensive insulin therapy is superior compared to the conventional insulin therapy. Oral antidiabetic drugs should be chosen based on individual risk profiles. Metformin can cause an iatrogenic vitamin B12 deficiency. In the treatment of neuropathic pain, the calcium channel blocker pregabalin has the highest recommendation level. The tricyclic antidepressant amitriptyline is considered to be equally effective, but it is contraindicated in autonomic dysregulation and cognitive impairment. Alternatively, the serotonin-norepinephrine reuptake inhibitor duloxetine is approved for the symptomatic treatment of diabetic neuropathies. Controversially discussed medications include alpha-lipoic acid, epalrestat, and L­serine. CONCLUSION: The diabetic neuropathy is frequent and causes severe complications. A good understanding of the underlying pathophysiology can contribute to the development of novel treatment strategies in the future.


Assuntos
Neuropatias Diabéticas , Neuralgia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina
14.
Zhonghua Gan Zang Bing Za Zhi ; 28(10): 861-867, 2020 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-33105932

RESUMO

Objective: Aldo-keto reductase family 1 member B10 (AKR1B10) pathogenesis, early diagnosis and prognosis are closely related with hepatoma. Therefore, this study explores the effect and mechanism of AKR1B10 on cell cycle in hepatoma cells. Methods: HepG2 cells were infected with lentivirus LV-AKR1B10-shRNA or treated with epalrestat, an AKR1B10 inhibitor. The expression level of AKR1B10 was detected by Western blot assay and real-time fluorescence quantitative PCR (RT-qPCR). Decreased AKR1B10 activity was detected by reduced coenzyme II (NADPH) absorbance at 340 nm. The low expression of AKR1B10 and the effect of different concentrations of epalrestat on cell proliferation and cell cycle were detected by CCK-8 method and flow cytometry. The protein expression levels of p-rb, cyclin D1, E1, p27 in HepG2 cells were detected by Western blot. The mean of the two samples was tested using independent sample t-test. Results: AKR1B10 expression level in hepatoma cells was significantly increased compared to normal liver cells, and the relative expression level of AKR1B10 protein in HepG2 cells was 6.71 ± 1.11 (P = 0.012). Epalrestat was significantly inhibited with the enzymatic activity of AKR1B10 in a dose-dependent manner. AKR1B10 gene in HepG2 cells was effectively silenced. HepG2 cells treated with different concentrations of epalrestat (AKR1B10 inhibitor) for 24, 48 and 72 h had inhibited cell proliferation, promoted G0/G1 cell cycle arrest, reduced the expression of p-Rb, cyclin D1, and cyclin E1 and increased the expression of cyclin dependent kinase inhibitor p27 expression. Conclusion: AKR1B10 inhibitory expression and activity can promote G0/G1 cell cycle arrest in HepG2 cells through the p27 / p-Rb pathway.


Assuntos
Aldo-Ceto Redutases/metabolismo , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Aldo-Ceto Redutases/genética , Carcinoma Hepatocelular/genética , Pontos de Checagem do Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inativação Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Proteína do Retinoblastoma
15.
Zhonghua Gan Zang Bing Za Zhi ; 27(1): 39-44, 2019 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-30685922

RESUMO

Objective: To investigate the inhibitory effect of AKR1B10 inhibitor combined with sorafenib on hepatocellular carcinoma (HCC) xenograft growth. Methods: HepG2 xenograft model was established in nude mice. The mice were then randomly divided into four groups: control group, epalrestat monotherapy group, sorafenib monotherapy group and combination treatment group. Tumor volume, tumor weight, T/C ratio and the change in body weight of nude mice in each group were compared to evaluate the curative effect. Immunohistochemistry staining was used to detect the expression of Ki-67 in tumor tissues to evaluate the proliferation status of tumor cells. One-way analysis of variance was used to compare the differences between the groups. Student's t-test was used to test means of two groups and chi-square test was used for multiple samples. Results: The differences of the grafted tumor volume before and after treatment between the control group, epalrestat group, sorafenib group and combined therapy group was 238.940 ± 39.813, 124.991 ± 84.670, -26.111 ± 11.518, and -54.072 ± 17.673(mm(3)), respectively, (F = 37.048, P < 0.001). The tumor mass were 0.273 ± 0.140, 0.158 ± 0.078, 0.079 ± 0.054, 0.045 ± 0.024 (g), (F = 16.594, P < 0.001); T/C ratio were 100%, 57.9%, 28.9%, 16.5%, and Ki-67 positive rate were 23.295 ± 6.218, 13.503 ± 3.392, 7.325 ± 2.257, 4.664 ± 1.189 (%), (χ(2) = 822.203, P < 0.001) . The tumor volume (t = -3.579, P = 0.002) and Ki-67 positive rate (t = -10.003, P < 0.001) in epalrestat monotherapy group were significantly lower than control group. The tumor volume (t = 2.056, P = 0.025), tumor mass (t = 2.101, P = 0.043), and Ki-67 positive rate (t = -2.850, P = 0.005) in combination treatment group were significantly lower than sorafenib monotherapy group. Compared with the control group, the body weight of nude mice in the treatment group decreased to a certain extent, but there was no statistically significant difference between epalrestat monotherapy group and control group (t = -1.599, P = 0.262), and combined therapy and sorafenib monotherapy group (t = -0.051, P = 0.96). Conclusion: AKR1B10 inhibitor enhanced the inhibitory effect of sorafenib on hepatocellular carcinoma xenograft.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral/efeitos dos fármacos , Xenoenxertos , Neoplasias Hepáticas , Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Adulto , Aldo-Ceto Redutases , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Chem Pharm Bull (Tokyo) ; 66(7): 721-726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962455

RESUMO

Highly reactive α,ß-unsaturated carbonyl compounds, such as acrolein (ACR), crotonaldehyde (CA) and methyl vinyl ketone (MVK), are environmental pollutants present in high concentrations in cigarette smoke. We have previously found that these carbonyl compounds in cigarette smoke extract (CSE) react with intracellular glutathione (GSH) to produce the corresponding GSH-ACR, GSH-CA and GSH-MVK adducts via Michael addition reaction. These adducts are then further reduced to the corresponding alcohol forms by intracellular aldo-keto reductases in highly metastatic mouse melanoma (B16-BL6) cells and then excreted into the extracellular fluid. This time, we conducted a similar study using sheep erythrocytes and found analogous changes in the sheep erythrocytes after exposure to CSE as those with B16-BL6 cells. This indicates similarity of the detoxification pathways of the α,ß-unsaturated carbonyl compounds in sheep blood cells and B16-BL6 cells. Also, we found that the GSH-MVK adduct was reduced by aldose reductase in a cell-free solution to generate its alcohol form, and its reduction reaction was completely suppressed by pretreatment with epalrestat, an aldose reductase inhibitor, a member of the aldo-keto reductase family. In the presence of sheep blood cells, however, reduction of the GSH-MVK adduct was partially inhibited by epalrestat. This revealed that some member of the aldo-keto reductase superfamily other than aldose reductase is involved in reduction of the GSH-MVK adduct in sheep blood. These results suggest that blood cells, mainly erythrocytes are involved in reducing the inhalation toxicity of cigarette smoke via an aldo-keto reductase pathway other than that of aldose reductase.


Assuntos
Acroleína/metabolismo , Aldeídos/metabolismo , Butanonas/metabolismo , Fumar Cigarros/metabolismo , Eritrócitos/metabolismo , Fumaça/análise , Acroleína/química , Acroleína/farmacologia , Aldeídos/química , Aldeídos/farmacologia , Animais , Butanonas/química , Butanonas/farmacologia , Eritrócitos/efeitos dos fármacos , Ovinos , Produtos do Tabaco
17.
Biomed Chromatogr ; 31(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27650591

RESUMO

In the present study, a simple, rapid and reliable ultrahigh-performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method was developed and validated to determine simultaneously epalrestat (EPA) and puerarin (PUE) in rat plasma for evaluation of the pharmacokinetic interaction of these two drugs. Both the analytes and glipizide (internal standard, IS) were extracted using a protein precipitation method. The separation was performed on a C18 reversed phase column using acetonitrile and 5 mmol/L ammonium acetate in water as the mobile phase with a gradient elution program. The analytes, including IS, were quantified with multiple reaction monitoring under negative ionization mode. The optimized mass transition ion pairs (m/z) were 318.1 → 274.0 for EPA, 415.1 → 266.9 for PUE and 444.2 → 166.9 for IS. The linear calibration curves for EPA and PUE were obtained in the concentration ranges of 10-4167 and 20-8333 ng/mL, respectively (r > 0.99). The current method was successfully applied for the pharmacokinetic interaction study in rats following administration of EPA and PUE alone or co-administration (EPA 15 mg/kg, oral; PUE 30 mg/kg, intravenous). The results showed that the combination of EPA and PUE could increase t1/2 of EPA and reduce Tmax of EPA. These changes indicated that EPA and PUE might cause drug-drug interactions when co-administrated.


Assuntos
Cromatografia Líquida/métodos , Isoflavonas/sangue , Isoflavonas/farmacocinética , Rodanina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Tiazolidinas/sangue , Tiazolidinas/farmacocinética , Animais , Interações Medicamentosas , Estabilidade de Medicamentos , Feminino , Limite de Detecção , Masculino , Ratos Wistar , Reprodutibilidade dos Testes , Rodanina/sangue , Rodanina/farmacocinética
18.
Korean J Physiol Pharmacol ; 19(5): 401-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330752

RESUMO

Aldose reductase (AR) is known to play a crucial role in the mediation of diabetic and cardiovascular complications. Recently, several studies have demonstrated that allergen-induced airway remodeling and ovalbumin-induced asthma is mediated by AR. Epalrestat is an aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Whether AR is involved in pathogenesis of pulmonary fibrosis and whether epalrestat attenuates pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. The expression of AR, TGF-ß1, α-SMA and collagen I was analyzed by immunohistochemisty, real-time PCR or western blot. In vivo, epalrestat treatment significantly ameliorated the bleomycin-mediated histological fibrosis alterations and blocked collagen deposition concomitantly with reversing bleomycin-induced expression up-regulation of TGF-ß1, AR, α-SMA and collagen I (both mRNA and protein). In vitro, epalrestat remarkably attenuated proliferation of pulmonary fibroblasts and expression of α-SMA and collagen I induced by TGF-ß1, and this inhibitory effect of epalrestat was accompanied by inhibiting AR expression. Knockdown of AR gene expression reversed TGF-ß1-induced proliferation of fibroblasts, up-regulation of α-SMA and collagen I expression. These findings suggest that AR plays an important role in bleomycin-induced pulmonary fibrosis, and epalrestat inhibited the progression of bleomycin-induced pulmonary fibrosis is mediated via inhibiting of AR expression.

19.
Drug Deliv Transl Res ; 14(11): 3291-3308, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38780858

RESUMO

The ocular administration of lipophilic and labile drugs such as epalrestat, an aldose reductase inhibitor with potential for diabetic retinopathy treatment, demands the development of topical delivery systems capable of providing sufficient ocular bioavailability. The aim of this work was to develop non-aqueous oleogels based on soybean oil and gelators from natural and sustainable sources (ethyl cellulose, beeswax and cocoa butter) and to assess their reproducibility, safety and efficiency in epalrestat release and permeation both ex vivo and in vivo. Binary combinations of gelators at 10% w/w resulted in solid oleogels (oleorods), while single gelator oleogels at 5% w/w remained liquid at room temperature, with most of the oleogels displaying shear thinning behavior. The oleorods released up to 4 µg epalrestat per mg of oleorod in a sustained or burst pattern depending on the gelator (approx. 10% dose in 24 h). The HET-CAM assay indicated that oleogel formulations did not induce ocular irritation and were safe for topical ocular administration. Corneal and scleral ex vivo assays evidenced the permeation of epalrestat from the oleorods up to 4 and 2.5 µg/cm2 after six hours, respectively. Finally, the capacity of the developed oleogels to sustain release and provide significant amounts of epalrestat to the ocular tissues was demonstrated in vivo against aqueous-based niosomes and micelles formulations loaded with the same drug concentration. Overall, the gathered information provides valuable insights into the development of oleogels for ocular drug delivery, emphasizing their safety and controlled release capabilities, which have implications for the treatment of diabetic neuropathy and other ocular conditions.


Assuntos
Administração Oftálmica , Compostos Orgânicos , Animais , Compostos Orgânicos/química , Compostos Orgânicos/administração & dosagem , Celulose/análogos & derivados , Celulose/química , Celulose/administração & dosagem , Ceras/química , Óleo de Soja/química , Óleo de Soja/administração & dosagem , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Córnea/metabolismo , Coelhos , Membrana Corioalantoide/efeitos dos fármacos , Géis/química , Rodanina/análogos & derivados , Tiazolidinas
20.
Int Immunopharmacol ; 140: 112812, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094360

RESUMO

Diabetic nephropathy (DN) is one of the leading clinical causes of end-stage renal failure. The classical aldose reductase (AR) inhibitor epalrestat shows beneficial effect on renal dysfunction induced by DN, with metabolic profile and molecular mechanisms remains to be investigated further. In the current study, integrated untargeted metabolomics, network pharmacology and molecular dynamics approaches were applied to explore the therapeutic mechanisms of epalrestat against DN. Firstly, untargeted serum and urine metabolomics analysis based on UPLC-Q-TOF-MS was performed, revealed that epalrestat could regulate the metabolic disorders of amino acids metabolism, arachidonic acid metabolism, pyrimidine metabolism and citrate cycle metabolism pathways after DN. Subsequently, metabolomics-based network analysis was carried out to predict potential active targets of epalrestat, mainly involving AGE-RAGE signaling pathway, TNF signaling pathway and HIF-1 signaling pathway. Moreover, a 100 ns molecular dynamics approach was employed to validate the interactions between epalrestat and the core targets, showing that epalrestat could form remarkable tight binding with GLUT1 and NFκB than it with AR. Surface-plasmon resonance assay further verified epalrestat could bind GLUT1 and NFκB proteins specifically. Overall, integrated system network analysis not only demonstrated that epalrestat could attenuate DN induced metabolic disorders and renal injuries, but also revealed that it could interact with multi-targets to play a synergistic regulatory role in the treatment of DN.


Assuntos
Nefropatias Diabéticas , Metabolômica , Simulação de Dinâmica Molecular , Rodanina , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Animais , Masculino , Rodanina/análogos & derivados , Rodanina/uso terapêutico , Rodanina/farmacologia , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico , Humanos , Aldeído Redutase/metabolismo , Aldeído Redutase/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , NF-kappa B/metabolismo , Farmacologia em Rede , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA