Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 763-769, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621880

RESUMO

This study aims to investigate the effect of Erchen Decoction(ECD) on liver mitochondrial function in mice with a high-fat diet and its possible mechanism. A total of sixty C57BL/6J mice were randomly divided into a normal group, high-fat group, ECD group, mTORC1 activator(MHY) group, ECD+MHY group, and polyene phosphatidyl choline(PPC) group, with 10 rats in each group. The normal group was given a normal diet, and the other groups were fed a high-fat diet for 20 weeks. At the 17th week, the ECD group and ECD+MHY group were given ECD(8.7 g·kg~(-1)) daily, and the PPC group was given PPC(0.18 g·kg~(-1)) daily, while the remaining groups were given normal saline(0.01 mL·g~(-1)) daily for four weeks. In the 19th week, the MHY group and ECD+MHY group were injected intraperitoneally with MHY(5 mg·kg~(-1)) every other day for two weeks. During the experiment, the general conditions of the mice were observed. The contents of triglyceride(TG) and total cholesterol(TC) in serum were measured. Morphological changes in liver tissue were examined through HE and oil red O staining. The content of adenosine triphosphate(ATP) was determined using chemiluminescence, and mitochondrial membrane potential was assessed using a fluorescence probe(JC-1). Western blot was performed to detect the expression of rapamycin target protein complex 1(mTOR1), ribosomal protein S6 kinase B1(S6K), sterol regulatory element binding protein 1(SREBP1), and caveolin 1(CAV1). RESULTS:: revealed that compared with the normal group, the mice in the high-fat group exhibited significant increases in body weight and abdominal circumference(P<0.01). Additionally, there were significant increases in TG and TC levels(P<0.01). HE and oil red O staining showed that the boundaries of hepatic lobules were unclear; hepatocytes were enlarged, round, and irregularly arranged, with obvious lipid droplet deposition and inflammatory cell infiltration. The liver ATP content and mitochondrial membrane potential decreased significantly(P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 increased significantly(P<0.01), while the expression of CAV1 decreased significantly(P<0.01). Compared with the high-fat group, the body weight and TG content of mice in the ECD group and PPC group decreased significantly(P<0.05). Improvements were observed in hepatocyte morphology, lipid deposition, and inflammatory cell infiltration. Furthermore, there were significant increases in ATP content and mitochondrial membrane potential(P<0.05 or P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly in the ECD group(P<0.01), while CAV1 expression increased significantly(P<0.01). However, the indices mentioned above did not show improvement in the MHY group. When the ECD+MHY group was compared with the MHY group, there were significant reductions in body weight and TG contents(P<0.05). The morphological changes of hepatocytes, lipid deposition, and inflammatory cell infiltration were recovered. Moreover, there were significant increases in liver ATP content and mitochondrial membrane potential(P<0.05 or P<0.05). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly(P<0.01), while CAV1 expression increased significantly(P<0.01). In conclusion, ECD can improve mitochondrial function by regulating the mTORC1/SREBP1/CAV1 pathway. This mechanism may be involved in the resolution of phlegm syndrome and the regulation of lipid metabolism.


Assuntos
Compostos Azo , Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos/metabolismo , Peso Corporal , Trifosfato de Adenosina/farmacologia
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621978

RESUMO

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metionina/metabolismo , Metionina/farmacologia , Interleucina-10/genética , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , RNA Mensageiro/metabolismo
3.
J Ethnopharmacol ; 319(Pt 3): 117320, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37838297

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A combination of 6 different Chinese herbs known as Erchen decoction (ECD) has been traditionally used to treat digestive tract diseases and found to have a protective effect against nonalcoholic fatty liver disease (NAFLD). Despite its efficacy in treating NAFLD, the precise molecular mechanism by which Erchen Decoction regulated iron ion metabolism to prevent disease progression remained poorly understood. AIM OF STUDY: Our study attempted to confirm the specific mechanism of ECD in reducing lipid and iron in NAFLD from the perspective of regulating the expression of Caveolin-1 (Cav-1). STUDY DESIGN: In our study, the protective effect of ECD was investigated in Palmitic Acid + Oleic Acid-induced hepatocyte NAFLD model and high-fat diet-induced mice NAFLD model. To investigate the impact of Erchen Decoction (ECD) on lipid metabolism and iron metabolism via mediating Cav-1 in vitro, Cav-1 knockdown cell lines were established using lentivirus-mediated transfection techniques. MATERIALS AND METHODS: We constructed NAFLD model by feeding with high-fat diet for 12 weeks in vivo and Palmitic Acid + Oleic Acid treatment for 24 h in vitro. The regulation of Lipid and iron metabolism results by ECD were detected by serological diagnosis, immunofluorescent and immunohistochemical staining, and western blotting. The binding ability of 6 small molecules of ECD to Cav-1 was analyzed by molecular docking. RESULTS: We demonstrated that ECD alleviated the progression of NAFLD by inhibiting lipid accumulation, nitrogen oxygen stress, and iron accumulation in vivo and in vitro experiments. Furthermore, ECD inhibited lipid and iron accumulation in liver by up-regulating the expression of Cav-1, which indicated that Cav-1 was an important target for ECD to exert its curative effect. CONCLUSIONS: In summary, our study demonstrated that ECD alleviated the accumulation of lipid and iron in NAFLD through promoting the expression of Cav-1, and ECD might serve as a novel Cav-1 agonist to treat NAFLD.


Assuntos
Sobrecarga de Ferro , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Palmítico/toxicidade , Caveolina 1/genética , Ácido Oleico/farmacologia , Simulação de Acoplamento Molecular , Fígado , Metabolismo dos Lipídeos , Sobrecarga de Ferro/tratamento farmacológico , Ferro/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
4.
Integr Cancer Ther ; 23: 15347354241259182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845538

RESUMO

BACKGROUND: The prescription of Chinese herbal medicine (CHM) consists of multiple herbs that exhibit synergistic effects due to the presence of multiple components targeting various pathways. In clinical practice, the combination of Erchen decoction and Huiyanzhuyu decoction (EHD) has shown promising outcomes in treating patients with laryngeal squamous cell carcinoma (LSCC). However, the underlying mechanism by which EHD exerts its therapeutic effects in LSCC remains unknown. METHODS: Online databases were utilized for the analysis and prediction of the active constituents, targets, and key pathways associated with EHD in the treatment of LSCC. The protein-protein interaction (PPI) network of common targets was constructed and visualized using Cytoscape 3.8.1 software. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functional roles of core targets within the PPI network. Protein clustering was conducted utilizing the MCODE plug-in. The obtained results highlight the principal targets and pathways involved. Subsequently, clinical samples were collected to validate alterations in the levels of these main targets through Western blotting (WB) and immunohistochemistry (IHC). Furthermore, both in vivo and in vitro experiments were conducted to investigate the therapeutic effects of EHD on healing LSCC and elucidate its underlying mechanism. Additionally, to ensure experimental reliability and reproducibility, quality control measures utilizing HPLC were implemented for EHD herbal medicine. RESULTS: The retrieval and analysis of databases in EHD medicine and LSCC disease yielded a total of 116 overlapping targets. The MCODE plug-in methods were utilized to acquire 8 distinct protein clusters through protein clustering. The findings indicated that both the first and second clusters exhibited a size greater than 6 scores, with key genes PI3K and ErbB occupying central positions, while the third and fourth clusters were associated with proteins in the PI3K, STAT3, and Foxo pathways. GO functional analysis reported that these targets had associations mainly with the pathway of p53 mediated DNA damage and negative regulation of cell cycle in terms of biological function; the death-induced signaling complex in terms of cell function; transcription factor binding and protein kinase activity in terms of molecular function. The KEGG enrichment analysis demonstrated that these targets were correlated with several signaling pathways, including PI3K-Akt, FoxO, and ErbB2 signaling pathway. On one hand, we observed higher levels of key genes such as P-STAT3, P-PDK1, P-Akt, PI3K, and ErbB2 in LSCC tumor tissues compared to adjacent tissues. Conversely, FOXO3a expression was lower in LSCC tumor tissues. On the other hand, the key genes mentioned above were also highly expressed in both LSCC xenograft nude mice tumors and LSCC cell lines, while FOXO3a was underexpressed. In LSCC xenograft nude mice models, EHD treatment resulted in downregulation of P-STAT3, P-PDK1, PI3K, P-AKT, and ErbB2 protein levels but upregulated FOXO3a protein level. EHD also affected the levels of P-STAT3, P-PDK1, PI3K, P-AKT, FOXO3a, and ErbB2 proteins in vitro: it inhibited P-STAT3, P-AKT, and ErbB2, while promoting FOXO3a; however, it had no effect on PDK1 protein. In addition, HPLC identified twelve compounds accounting for more than 30% within EHD. The findings from this study can serve as valuable guidance for future experimental investigations. CONCLUSION: The possible mechanism of EHD medicine action on LSCC disease is speculated to be closely associated with the ErbB2/PI3K/AKT/FOXO3a signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Laríngeas , Farmacologia em Rede , Mapas de Interação de Proteínas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Farmacologia em Rede/métodos , Animais , Neoplasias Laríngeas/tratamento farmacológico , Camundongos , Carcinoma de Células Escamosas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Masculino , Linhagem Celular Tumoral , Camundongos Nus , Feminino , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(8): 1287-1296, 2023 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-37712264

RESUMO

OBJECTIVE: To investigate the effect of Erchen Decoction on iron homeostasis in mice with nonalcoholic fatty liver disease (NAFLD) and its mechanism for regulating iron transport in spleen cells. METHODS: Thirty male C57BL/6J mice were given a high-fat diet for 12 weeks and randomized (n=6) at the 7th week for gavage (3 times a week) of drinking water (NAFLD model group), Erchen Decoction at low, medium and high doses (7.5, 15, and 30g/kg, respectively), or polyene phosphatidyl choline (PPC; 9.12 mg/kg), with another 6 mice with low-fat and low-sugar feeding as the control group. The active components of Erchen Decoction were determined by HPLC-MS. Lipid accumulation in the liver was evaluated by HE staining and Nile red staining. Prussian blue staining was used to observe iron content in the spleen. The iron ion content in the liver tissue was detected using a detection kit. The expressions of ferroportin1 (Fpn1), transferrin receptor (TfR), Steap3, HO-1, Ter-119, CD163 and CD68 were detected using Western blotting, immunohistochemistry and immunofluorescence staining. RESULTS: Medium- and high-dose Erchen Decoction partially reversed the increase of lipid accumulation in the liver of NAFLD mice and showed better lipid-lowering effect than PPC. The NAFLD mice showed significantly decreased iron ion content in the spleen with increased hepatic and serum iron contents (P < 0.05), decreased TfR protein expression (P < 0.05), and increased Fpn1 and Steap3 protein expressions (P < 0.05), and these changes were significantly improved by the drug interventions. Erchen Decoction also improved the function of CD163 macrophages in the spleen of NAFLD mice by up-regulating the expression of HO-1 (P < 0.05). CONCLUSION: Erchen Decoction can alleviate high-fat diet-induced iron metabolism disorder by improving the iron ion transport ability of the spleen cells to delay the progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Baço , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Transporte de Íons , Homeostase , Lipídeos
6.
Phytomedicine ; 115: 154808, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37087794

RESUMO

OBJECTIVE: Erchen decoction, a traditional Chinese medicine formula, can reduce the level of oxidative stress for the treatment of dyslipidemia phlegm-dampness retention syndrome (DPDRS); however, studies have not elucidated the mechanism underlying its metabolic action. Here, liquid chromatography-mass spectrometry (LC-MS)-based metabolomic techniques were utilized to characterize the in vivo effects of Erchen decoction in achieving reduction of oxidative stress levels and understand the potential metabolic mechanisms of action. METHODS: We constructed a DPDRS animal model using a multifactorial composite modeling approach, and Erchen decoction was administered by gavage. We employed LC-MS-based metabolomic techniques in combination with serum-associated factors, gene transcription, methylation detection, and hematoxylin and eosin staining. RESULTS: In this study, the constructed animal model of DPDRS had satisfactory quality. Erchen decoction treatment reduced the levels of low-density lipoprotein cholesterol, t total cholesterol and riglyceride; it improved the endothelial structure, increased levels of serum ß-nicotinamide adenine dinucleotide phosphate and glutathione concentrations, increased aortic phosphoserine aminotransferase and phosphoserine phosphatase gene expression levels, and decreased aortic phosphoglycerate dehydrogenase methylation level. A total of 64 differential metabolites were obtained using LC-MS assay, and 34 differential metabolic pathways were obtained after enrichment. CONCLUSIONS: Erchen decoction treatment of DPDRS mice reversed lipid indexes, improved vascular endothelial structure, increased serum and aortic anti-oxidative stress factor concentration and expression levels, and decreased methylation levels, thereby reducing oxidative stress and protecting vascular endothelium. Tricarboxylic acid cycle and metabolic pathways of serum glutamine, serine, tryptophan, pyrimidine, and pyruvate were the most relevant metabolic pathways involved in reducing oxidative stress levels by Erchen decoction during DPDRS treatment; especially, mitochondrial redox homeostasis maintenance in endothelial cells may be crucial. In this work, the therapeutic potential of Erchen decoction for reducing the oxidative stress level in DPDRS was demonstrated; however, its in-depth mechanism is worth further exploration.


Assuntos
Medicamentos de Ervas Chinesas , Dislipidemias , Camundongos , Animais , Células Endoteliais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica/métodos , Cromatografia Líquida , Espectrometria de Massas/métodos , LDL-Colesterol , Dislipidemias/tratamento farmacológico , Estresse Oxidativo
7.
Front Pharmacol ; 14: 1117238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274103

RESUMO

Background: In recent years, the incidence and mortality rates of chronic obstructive pulmonary disease (COPD) have increased significantly. Erchen Decoction combined with Xiebai Powder (ECXB) formula is mainly used to treat lung diseases in traditional Chinese medicine (TCM). However, the active ingredients of ECXB formula, COPD treatment-related molecular targets, and the mechanisms are still unclear. To reveal its underlying action of mechanism, network pharmacology, molecular docking, and molecular dynamic (MD) simulation approaches were used to predict the active ingredients and potential targets of ECXB formula in treating COPD. As a result, Herb-Symptom analysis showed that the symptoms treated by both TCM and modern medicine of ECXB formula were similar to the symptoms of COPD. Network pharmacology identified 170 active ingredients with 137 targets, and 7,002 COPD targets was obtained. 120 targets were obtained by intersection mapping, among which the core targets include MAPK8, ESR1, TP53, MAPK3, JUN, RELA, MAPK1, and AKT1. Functional enrichment analysis suggested that ECXB formula might exert its treat COPD pharmacological effects in multiple biological processes, such as cell proliferation, apoptosis, inflammatory response, and synaptic connections, and ECXB formula treated COPD of the KEGG potential pathways might be associated with the TNF signaling pathway, cAMP signaling pathway, and VEGF signaling pathway. Molecular docking showed that ECXB formula treatment COPD core active ingredients can bind well to core targets. MD simulations showed that the RELA-beta-sitosterol complex and ESR1-stigmasterol complex exhibited higher conformational stability and lower interaction energy, further confirming the role of ECXB formula in the treatment of COPD through these core components and core targets. Our study analyzed the medication rule of ECXB formula in the treatment of COPD from a new perspective and found that the symptoms treated by both TCM and modern medicine of ECXB formula were similar to the symptoms of COPD. ECXB formula could treat COPD through multi-component, multi-target, and multi-pathway synergistic effects, providing a scientific basis for further study on the mechanism of ECXB formula treatment of COPD. It also provides new ideas for drug development.

8.
J Ethnopharmacol ; 317: 116811, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37336336

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Erchen decoction (ECD) is a traditional Chinese medicine formula comprising six distinct herbs and has been documented to possess a protective effect against obesity. The study conducted previously demonstrated that ECD has the potential to effectively modulate the composition of gut microbiota and levels of short-chain fatty acids (SCFAs) in obese rat. However, the regulatory mechanism of ECD on gut microbiota and SCFAs and further improvement of obesity have not been thoroughly explained. AIM OF THE STUDY: The objective of this study was to examine the therapeutic effect and molecular mechanism of ECD in a rat model of high-fat diet (HFD) feeding. MATERIALS AND METHODS: Rats with HFD-induced obesity were treated with ECD. Upon completion of the study, serum and liver samples were procured to conduct biochemical, pathological, and Western blotting analyses. The investigation of alterations in the gut microbiota subsequent to ECD treatment was conducted through the utilization of 16S rRNA sequencing. The metabolic alterations in the cecal contents were examined through the utilization of mass spectrometry-ultraperformance liquid chromatography. RESULTS: ECD treatment improved lipid metabolic disorders and reduced hepatic steatosis in HFD-induced obese rats. Obese rat treated with ECD showed a higher abundance of SCFA-producing bacteria, including Lactobacillus, Bifidobacterium, and Butyricicoccus, and lower abundance of disease-related bacteria, such as Bacteroides, Parabacteroides, and Sediminibacterium. Additionally, ECD caused an increase in total SCFAs levels; in particular, butyric acid was dramatically increased in the HFD group. Rats treated with ECD also exhibited significantly increased butyric acid concentrations in the serum and liver. The subsequent reduction in histone deacetylase 1 expression and increase in acetyl-histone 3-lysine 9 (H3K9ac) levels contributed to the promotion of fatty acid ß-oxidation (FAO) in liver by ECD. CONCLUSION: This study demonstrates that ECD regulates the gut microbiota and promotes butyric acid production to ameliorate obesity-related hepatic steatosis. The mechanism might be related to the promotion of FAO via a butyric acid-mediated increase in H3K9ac levels in the liver.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , RNA Ribossômico 16S , Obesidade/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ácidos Graxos Voláteis/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
9.
Phytomedicine ; 114: 154797, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037084

RESUMO

BACKGROUND: Vascular dementia (VaD) is one of the most common clinical syndromes of progressive neurocognitive dysfunction with uncertain mechanisms. Modified Erchen decoction (MECD), developed from "Erchen decoction (ECD)" recorded in "Taiping Huimin Heji Jufang", showed a good effect in the treatment of VaD. However, its therapeutic mechanism is still unclear. PURPOSE: This study aimed to elucidate the multi-target mechanisms of MECD against VaD in vivo and in vitro. METHODS: VaD model was established by two-vessel obstruction (2-VO) in Sprague-Dawley rats. Six groups, including the control, 2-VO operation, MECD treatment (2.5, 5.0 and 10.0 g kg-1 d-1), donepezil hydrochloride (positive control, 0.45 g kg-1 d-1) were designed in the whole experiment. After oral administration for 4 weeks, the effects of MECD were verified by behavioral experiments, histological observation, and biochemical index analysis. The chemical profiling of MECD was performed by UHPLC-Orbitrap Fusion-HRMS, and a "compound-target-pathway" multivariate network was constructed to validate and elucidate its pharmacological mechanisms. RESULTS: Compared with 2-VO group, MECD treatment significantly alleviated anxiety and improved spatial memory in VaD rats according to the open field test (OFT) and Y-maze test. A significant increase in neuron number was observed from hematoxylin and eosin (H&E) stained images in cornu ammonis 1 (CA1) of the hippocampal region after MECD treatment. On the one hand, MECD reduced the plasma levels of triglyceride (TG), low-density lipoprotein (LDL), malondialdehyde (MDA), and amyloid-beta 42 (Aß42), and inhibited mRNA expression of interleukin-1 beta (Il-1ß) and Il-6 in the hippocampus. On the other hand, superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were significantly increased after treatment with MECD. Moreover, MECD reduced the mRNA expression and protein expression of janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK), and BCL2-associated X (BAX) in the brain of 2-VO rats. Furthermore, 71 compounds were identified from the extract of MECD. Among them, liquiritin and isochlorogenic acid C gave inhibiting effects on the mRNA expression of Jnk. In addition, liquiritin and hesperetin were conformed with the inhibition of Jak2 transcription level in vitro experiments. CONCLUSION: MECD has demonstrated a significant amelioration effect on cognitive dysfunction in VaD rats via JAK2/STAT3 and JNK/BAX signaling pathways, which represents an innovative insight into the "activate blood and eliminate phlegm" theory.


Assuntos
Disfunção Cognitiva , Demência Vascular , Ratos , Animais , Janus Quinase 2/metabolismo , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro
10.
Front Pharmacol ; 13: 1000639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313338

RESUMO

Objective: Erchen Decoction (ECD), a well-known traditional Chinese medicine, exerts metabolism-regulatory, immunoregulation, and anti-tumor effects. However, the action and pharmacological mechanism of ECD remain largely unclear. In the present study, we explored the effects and mechanisms of ECD in the treatment of CRC using network pharmacology, molecular docking, and systematic experimental validation. Methods: The active components of ECD were obtained from the TCMSP database and the potential targets of them were annotated by the STRING database. The CRC-related targets were identified from different databases (OMIM, DisGeNet, GeneCards, and DrugBank). The interactive targets of ECD and CRC were screened and the protein-protein interaction (PPI) networks were constructed. Then, the hub interactive targets were calculated and visualized from the PPI network using the Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. In addition, the molecular docking was performed. Finally, systematic in vitro, in vivo and molecular biology experiments were performed to further explore the anti-tumor effects and underlying mechanisms of ECD in CRC. Results: A total of 116 active components and 246 targets of ECD were predicted based on the component-target network analysis. 2406 CRC-related targets were obtained from different databases and 140 intersective targets were identified between ECD and CRC. 12 hub molecules (STAT3, JUN, MAPK3, TP53, MAPK1, RELA, FOS, ESR1, IL6, MAPK14, MYC, and CDKN1A) were finally screened from PPI network. GO and KEGG pathway enrichment analyses demonstrated that the biological discrepancy was mainly focused on the tumorigenesis-, immune-, and mechanism-related pathways. Based on the experimental validation, ECD could suppress the proliferation of CRC cells by inhibiting cell cycle and promoting cell apoptosis. In addition, ECD could inhibit tumor growth in mice. Finally, the results of molecular biology experiments suggested ECD could regulate the transcriptional levels of several hub molecules during the development of CRC, including MAPKs, PPARs, TP53, and STATs. Conclusion: This study revealed the potential pharmacodynamic material basis and underlying molecular mechanisms of ECD in the treatment of CRC, providing a novel insight for us to find more effective anti-CRC drugs.

11.
Comb Chem High Throughput Screen ; 25(6): 986-997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33653242

RESUMO

BACKGROUND: Erchen Decoction (ECD) is a complex herbal formulation widely used for treating lipid metabolism disorder (LMD) in China. This study aims to explore the microRNA (miRNA)-related molecular targets of ECD against LMD using a network pharmacology approach (NPA) Methods: We randomly divided 20 male Sprague Dawley rats into two groups; 10 rats were normal controls, and the other 10 rats were fed a high-fat diet (HFD) for 12 weeks to establish an LMD model. Differentially expressed miRNAs (DE-miRs, HFD vs. Control) in the rats' liver tissues were identified by miRNA sequencing and validated with qRT-PCR. Finally, the miRNArelated molecular targets for ECD activity against LMD were identified using a standard NPA by finding the intersection between identified DE-miRs-related targets and ECD-related targets. RESULT: We identified 8 DE-miRs and 968 targets and compared them to 262 ECD-related targets. A final list of 22 candidate targets was identified. Using a confidence score of >0.4, the network of (protein-protein interaction) PPI relationships exhibited 22 nodes and 67 edges. The GO and KEGG enrichment analyses revealed 171 molecular targets and 59 pathways, which were associated with ECD against LMD. CONCLUSION: The identified molecular targets and pathways suggest that complex mechanisms are involved in ECD's mechanism of action, and immune-inflammation-related mechanisms are closely associated with the effects of ECD. The targets obtained in this study will guide future studies on the pharmacologic effects of ECD.


Assuntos
Medicamentos de Ervas Chinesas , Transtornos do Metabolismo dos Lipídeos , MicroRNAs , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley
12.
Front Pharmacol ; 12: 647529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366839

RESUMO

Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.

13.
Anat Rec (Hoboken) ; 304(11): 2605-2619, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536264

RESUMO

This study aimed to uncover the potential mechanism of Erchen decoction (ECD) on the amelioration of nonalcoholic fatty liver disease (NAFLD). Network pharmacology and bioinformatics were used to determine the active components of ECD and its potential target in treating NAFLD. High fat diet (HFD)-induced NAFLD mice model was used. Liver tissues were stained with hematoxylin and eosin, and Oil Red O. Serum lipid profiles and hepatic inflammatory molecules in lipopolysaccharide (LPS)/Toll-like receptor-4 (TLR-4) pathway were confirmed by enzyme-linked immunosorbent assay. Intestinal barrier function, including intestinal epithelial tight junction (IETJ) proteins, fecal short-chain fatty acids (SCFAs) concentration and intestinal microbiota composition, was also assessed. Screening relevant databases revealed 123 active components and 158 potential target proteins in ECD, as well as 1,783 differential genes for NAFLD. Enrichment analyses predicted that the regulation of LPS, cholesterol metabolism and inflammatory pathways might be the underlying mechanisms of ECD in NAFLD treatment. ECD ameliorated the multi-profiles of NAFLD and reversed the high levels of inflammatory molecules such as, serum LPS, hepatic TLR-4, tumor necrosis factor-α, and interleukin-1ß. Additionally, ECD upregulated the concentration levels of IETJ proteins and fecal SCFAs. 16s RNA sequencing indicated that ECD can improve the gut microbiota, such as Akkermansia, Clostridium XIVa, Coprococcus, and Ruminococcus. The current study demonstrated that ECD can reverse the HFD-induced intestinal barrier dysfunction, thereby reducing the LPS translocation and alleviating the hepatic inflammation, and eventually exhibiting a protective effect against NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
14.
J Ethnopharmacol ; 256: 112638, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32007633

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Laryngeal carcinoma (LC) is one of the most common malignant head and neck cancers with high incidence and mortality rates. Erchen decoction plus Huiyanzhuyu decoction (EHD) is commonly used for treating LC patients and produces beneficial results. However, the mechanisms underlying the effects of EHD remain unclear. AIM OF THE STUDY: The present study aimed to analyse the anticancer effects of EHD on the LC cell cycle, apoptosis, migration and invasion in vitro and to explore the underlying biological mechanisms. MATERIALS AND METHODS: TU212 and Hep-2 cells were used. The antitumour effects of EHD were detected by CCK8, microscopy, flow cytometry, EdU incorporation, Hoechst 33342 staining, wound-healing, and transwell assays to assess viability, morphology, apoptosis, cell cycle, migration and invasion, respectively. Furthermore, STAT3 and related proteins were evaluated in laryngeal squamous cell carcinoma (LSCC) cells by Western blot (WB) analysis. RESULTS: EHD treatment significantly decreased STAT3 and p-STAT3 protein expression levels in LSCC cells. EHD blocked the cell cycle at the G0/G1 phase and induced LSCC apoptosis. Moreover, the viability, migration, and invasion of LSCC cells were markedly inhibited by EHD. In addition, the expression of the cell cycle-related proteins cyclin D1 and cyclin B1 was downregulated in LSCC cells, but P27 expression was increased after EHD treatment. Regarding apoptosis-related proteins, EHD also reduced Bcl-2 expression but upregulated Bax and caspase-3 expression in LSCC cells. In the migration- and invasion-related protein analyses, EHD downregulated MMP-9 expression and upregulated E-cadherin expression. CONCLUSIONS: These results suggest that EHD has an anticancer effect in LSCC. EHD treatment induces apoptosis and inhibits the cell cycle, migration and invasion of LSCC cells, but further work is warranted to address the mechanisms.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Invasividade Neoplásica/prevenção & controle , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Laríngeas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA