Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 182: 107702, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781032

RESUMO

The angiosperm family Primulaceae is morphologically diverse and distributed nearly worldwide. However, phylogenetic uncertainty has obstructed the identification of major morphological and biogeographic transitions within the clade. We used target capture sequencing with the Angiosperms353 probes, taxon-sampling encompassing nearly all genera of the family, tree-based sequence curation, and multiple phylogenetic approaches to investigate the major clades of Primulaceae and their relationship to other Ericales. We generated dated phylogenetic trees and conducted broad-scale biogeographic analyses as well as stochastic character mapping of growth habit. We show that Ardisia, a pantropical genus and the largest in the family, is not monophyletic, with at least 19 smaller genera nested within it. Neotropical members of Ardisia and several smaller genera form a clade, an ancestor of which arrived in the Neotropics and began diversifying about 20 Ma. This Neotropical clade is most closely related to Elingamita and Tapeinosperma, which are most diverse on islands of the Pacific. Both Androsace and Primula are non-monophyletic by the inclusion of smaller genera. Ancestral state reconstructions revealed that there have either been parallel transitions to an herbaceous habit in Primuloideae, Samolus, and at least three lineages of Myrsinoideae, or a common ancestor of nearly all Primulaceae was herbaceous. Our results provide a robust estimate of phylogenetic relationships across Primulaceae and show that a revised classification of Myrsinoideae and several other clades within the family is necessary to render all genera monophyletic.


Assuntos
Primulaceae , Filogenia , Primulaceae/genética , Sequência de Bases , Análise de Sequência de DNA , DNA de Plantas/genética
2.
Am J Bot ; 110(8): e16213, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459475

RESUMO

PREMISE: Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors. METHODS: Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating "rate profiles" for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set. RESULTS: The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades. CONCLUSIONS: Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.


Assuntos
Ericales , Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/anatomia & histologia , Evolução Biológica , Filogenia , Flores/genética , Flores/anatomia & histologia
3.
New Phytol ; 236(5): 1908-1921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35731179

RESUMO

Fully mycoheterotrophic plants can be difficult to place in plant phylogeny due to elevated substitution rates associated with photosynthesis loss. This potentially limits the effectiveness of downstream analyses of mycoheterotrophy that depend on accurate phylogenetic inference. Although mitochondrial genomic data sets are rarely used in plant phylogenetics, theory predicts that they should be resilient to long-branch artefacts, thanks to their generally slow evolution, coupled with limited rate elevation in heterotrophs. We examined the utility of mitochondrial genomes for resolving contentious higher-order placements of mycoheterotrophic lineages in two test cases: monocots (focusing on Dioscoreales) and Ericaceae. We find Thismiaceae to be distantly related to Burmanniaceae in the monocot order Dioscoreales, conflicting with current classification schemes based on few gene data sets. We confirm that the unusual Afrothismia is related to Taccaceae-Thismiaceae, with a corresponding independent loss of photosynthesis. In Ericaceae we recovered the first well supported relationships among its five major lineages: mycoheterotrophic Ericaceae are not monophyletic, as pyroloids are inferred to be sister to core Ericaceae, and monotropoids to arbutoids. Genes recovered from mitochondrial genomes collectively resolved previously ambiguous mycoheterotroph higher-order relationships. We propose that mitochondrial genomic data should be considered in standardised gene panels for inferring overall plant phylogeny.


Assuntos
Ericaceae , Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Ericaceae/genética , Fotossíntese/genética , Genômica
4.
New Phytol ; 230(2): 821-831, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33454991

RESUMO

Morphological diversity (disparity) is an essential but often neglected aspect of biodiversity. Hence, it seems timely and promising to re-emphasize morphology in modern evolutionary studies. Disparity is a good proxy for the diversity of functions and interactions with the environment of a group of taxa. In addition, geographical and ecological patterns of disparity are crucial to understand organismal evolution and to guide biodiversity conservation efforts. Here, we analyse floral disparity across latitudinal intervals, growth forms, climate types, types of habitats, and regions for a large and representative sample of the angiosperm order Ericales. We find a latitudinal gradient of floral disparity and a decoupling of disparity from species richness. Other factors investigated are intercorrelated, and we find the highest disparity for tropical trees growing in African and South American forests. Explanations for the latitudinal gradient of floral disparity may involve the release of abiotic constraints and the increase of biotic interactions towards tropical latitudes, allowing tropical lineages to explore a broader area of the floral morphospace. Our study confirms the relevance of biodiversity parameters other than species richness and is consistent with the importance of species interactions in the tropics, in particular with respect to angiosperm flowers and their pollinators.


Assuntos
Ericales , Magnoliopsida , Biodiversidade , Flores , Filogenia , Clima Tropical
5.
Am J Bot ; 108(11): 2208-2219, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606096

RESUMO

PREMISE: Mycoheterotrophic plants rely on fungi to obtain their carbon requirements. Recent experiments demonstrated the presence of endophytic bacteria associated with mycoheterotrophs. Although mycoheterotrophs show high specificity for their fungal partners, it is not known whether they also show high specificity for associated bacteria or whether the bacteria have a definite function in the symbiosis. METHODS: Two 16S rRNA sequencing experiments were designed to explore endophytic microbial community composition and function in root ball fractions of the mycoheterotroph Pterospora andromedea (Ericaceae), and rhizosphere soil and control soil 5 m away from each plant. One experiment compared microbial assemblages in fractions of six plants to those in rhizosphere and control soil samples. Another experiment documented bacterial endophyte diversity in root balls of 97 plants from across North America. RESULTS: Soil samples were similar in bacterial community structure but were significantly more diverse and less consistently structured than were bacterial communities within root balls. The proportion of endophytic bacterial species varied slightly but not their community composition despite differences in P. andromedea lineage, geography, conifer species, and fungi. Predictive metagenomic profiling of the endophytes in P. andromedea-only root ball fractions showed many of the bacterial endophytes likely function in N-metabolism and N-fixation. CONCLUSIONS: Our results document a consistent and largely invariant community of endophytic bacteria in P. andromedea across biotic and abiotic environmental conditions at a continental scale. It is unknown what role these bacteria may play in the quad-partite symbiotic network centered on P. andromedea; however, the predictive metagenomic profiling suggests a possible function in N-metabolism or N-fixation. Discovery of a ubiquitous community of endophytic bacteria with a putative function centered on N-metabolism or N-fixation could have a previously unrecognized impact on understanding of mycoheterotroph ecophysiology.


Assuntos
Endófitos , Ericaceae , Bactérias/genética , Raízes de Plantas , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
6.
Am J Bot ; 107(5): 790-805, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32406108

RESUMO

PREMISE: Discordance between nuclear and organellar phylogenies (cytonuclear discordance) is a well-documented phenomenon at shallow evolutionary levels but has been poorly investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear discordance across major plant lineages is essential not only for elucidating evolutionary processes, but also for evaluating the currently used framework of plant phylogeny, which is largely based on the plastid genome. METHODS: We present a phylogenomic examination of a major angiosperm clade (Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of evaluating currently accepted relationships inferred from the plastome and exploring potential sources of genomic conflict in this group. RESULTS: We recovered at least five instances of well-supported cytonuclear discordance concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage sorting and hybridization, the latter supported in part by previously inferred whole-genome duplications. CONCLUSIONS: Our results challenge several long-standing hypotheses of asterid relationships and have implications for morphological character evolution and for the importance of ancient whole-genome duplications in early asterid evolution. These findings also highlight the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear genomic data.


Assuntos
Genomas de Plastídeos , Magnoliopsida/genética , Filogenia , Plastídeos , Árvores
7.
Am J Bot ; 107(5): 773-789, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32350864

RESUMO

PREMISE: Large genomic data sets offer the promise of resolving historically recalcitrant species relationships. However, different methodologies can yield conflicting results, especially when clades have experienced ancient, rapid diversification. Here, we analyzed the ancient radiation of Ericales and explored sources of uncertainty related to species tree inference, conflicting gene tree signal, and the inferred placement of gene and genome duplications. METHODS: We used a hierarchical clustering approach, with tree-based homology and orthology detection, to generate six filtered phylogenomic matrices consisting of data from 97 transcriptomes and genomes. Support for species relationships was inferred from multiple lines of evidence including shared gene duplications, gene tree conflict, gene-wise edge-based analyses, concatenation, and coalescent-based methods, and is summarized in a consensus framework. RESULTS: Our consensus approach supported a topology largely concordant with previous studies, but suggests that the data are not capable of resolving several ancient relationships because of lack of informative characters, sensitivity to methodology, and extensive gene tree conflict correlated with paleopolyploidy. We found evidence of a whole-genome duplication before the radiation of all or most ericalean families, and demonstrate that tree topology and heterogeneous evolutionary rates affect the inferred placement of genome duplications. CONCLUSIONS: We provide several hypotheses regarding the history of Ericales, and confidently resolve most nodes, but demonstrate that a series of ancient divergences are unresolvable with these data. Whether paleopolyploidy is a major source of the observed phylogenetic conflict warrants further investigation.


Assuntos
Ericales , Evolução Biológica , Consenso , Genoma , Filogenia
8.
Mol Phylogenet Evol ; 121: 198-211, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29360618

RESUMO

Relationships among the genera of the small, woody family Styracaceae and among families of the large, diverse order Ericales have resisted complete resolution with sequences from one or a few genes. We used plastome sequencing to attempt to resolve the backbone relationships of Styracaceae and Ericales and to explore plastome structural evolution. Complete plastomes for 23 species are newly reported here, including 18 taxa of Styracaceae and five of Ericales (including species of Sapotaceae, Clethraceae, Symplocaceae, and Diapensiaceae). Combined with publicly available complete plastome data, this resulted in a data set of 60 plastomes, including 11 of the 12 genera of Styracaceae and 12 of 22 families of Ericales. Styracaceae plastomes were found to possess the quadripartite structure typical of angiosperms, with sizes ranging from 155 to 159 kb. Most of the plastomes were found to possess the full complement of typical angiosperm plastome genes. Unusual structural features were detected in plastomes of Alniphyllum and Bruinsmia, including the presence of a large 20-kb inversion (14 genes) in the Large Single-Copy region, the loss or pseudogenization of the clpP and accD genes in Bruinsmia, and the loss of the first exon of rps16 in B. styracoides. Likewise, the second intron from clpP was found to be lost in Alniphyllum and Huodendron. Phylogenomic analyses including all 79 plastid protein-coding genes provided improved resolution for relationships among the genera of Styracaceae and families of Ericales. Styracaceae was strongly supported as monophyletic, with Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia successively sister to the remainder of the family, all with strong support. All genera of Styracaceae were recovered as monophyletic, except for Halesia and Pterostyrax, which were each recovered as polyphyletic with strong support. Within Ericales, all families were recovered as monophyletic with strong support, with Balsaminaceae sister to remaining Ericales. Most relationships recovered in plastome analyses are congruent with previous analyses based on smaller data sets. Our results demonstrate the power of plastid phylogenomics to improve phylogenetic hypotheses among genera and families, and provide new insight into plastome evolution across Ericales.


Assuntos
Ericales/classificação , Genômica , Filogenia , Plastídeos/genética , Styracaceae/classificação , Styracaceae/genética , Sequência de Bases , Evolução Molecular , Genomas de Plastídeos , Íntrons/genética , Funções Verossimilhança , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico/genética
9.
Mol Phylogenet Evol ; 122: 59-79, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410353

RESUMO

Inferring interfamilial relationships within the eudicot order Ericales has remained one of the more recalcitrant problems in angiosperm phylogenetics, likely due to a rapid, ancient radiation. As a result, no comprehensive time-calibrated tree or biogeographical analysis of the order has been published. Here, we elucidate phylogenetic relationships within the order and then conduct time-dependent biogeographical and diversification analyses by using a taxon and locus-rich supermatrix approach on one-third of the extant species diversity calibrated with 23 macrofossils and two secondary calibration points. Our results corroborate previous studies and also suggest several new but poorly supported relationships. Newly suggested relationships are: (1) holoparasitic Mitrastemonaceae is sister to Lecythidaceae, (2) the clade formed by Mitrastemonaceae + Lecythidaceae is sister to Ericales excluding balsaminoids, (3) Theaceae is sister to the styracoids + sarracenioids + ericoids, and (4) subfamilial relationships with Ericaceae suggest that Arbutoideae is sister to Monotropoideae and Pyroloideae is sister to all subfamilies excluding Arbutoideae, Enkianthoideae, and Monotropoideae. Our results indicate Ericales began to diversify 110 Mya, within Indo-Malaysia and the Neotropics, with exchange between the two areas and expansion out of Indo-Malaysia becoming an important area in shaping the extant diversity of many families. Rapid cladogenesis occurred along the backbone of the order between 104 and 106 Mya. Jump dispersal is important within the order in the last 30 My, but vicariance is the most important cladogenetic driver of disjunctions at deeper levels of the phylogeny. We detect between 69 and 81 shifts in speciation rate throughout the order, the vast majority of which occurred within the last 30 My. We propose that range shifting may be responsible for older shifts in speciation rate, but more recent shifts may be better explained by morphological innovation.


Assuntos
Biodiversidade , Magnoliopsida/classificação , Filogenia , Animais , Cloroplastos/genética , Ásia Oriental , Fósseis/história , Especiação Genética , História Antiga , Magnoliopsida/genética , Mitocôndrias/genética , Filogeografia/história , Ribossomos/genética
10.
Am J Bot ; 105(8): 1412-1423, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30075046

RESUMO

PREMISE OF THE STUDY: Numerous fossils from the Upper Cretaceous have been confidently placed within modern crown groups. Many 95-75 Myr-old taxa, however, including the taxon described herein, do not fit well with known extant crown or stem groups. Understanding such fossils and their possible affinities would certainly enhance our understanding of the circumstances involved in a major eudicot radiation. METHODS: Bulk samples from the Old Crossman Clay Pit were prepared using standard methodology, which includes several washing and sieving steps, and a treatment with hydrofluoric acid. The fossil taxon was coded into a matrix built from the combination of two previously published morphological matrices and was analyzed using the parsimony criterion with the computer program TNT. KEY RESULTS: The fossils have a unique combination of characters relative to living and fossil Ericales taxa, and therefore, a new genus, Teuschestanthes, is erected. Mosaic evolution and rapid parallel changes in such groups blur taxonomic distinctions, and these issues are exacerbated by limited numbers of characters available in fossils. Teuschestanthes flowers are slightly bilaterally symmetrical and somewhat variable with regard to petal disposition, suggesting an early stage in transition to bilaterality from radial symmetry early in eudicot history under pollinator selective pressure. CONCLUSIONS: While Teuschestanthes shares characters with modern Ericales and Sapindales, there are significant non-overlapping differences between Teuschestanthes and modern Sapindales (notably, among others, ovule number). Based on available evidence, however, the position of Teuschestanthes is likely as an early offshoot of the stem clade of core Ericales (Ericales sensu stricto). Its relatively unstable floral plan may presage subsequent bilaterality associated with growing selective pressure by advanced pollinators.


Assuntos
Evolução Biológica , Ericales/genética , Flores/anatomia & histologia , Fósseis/anatomia & histologia , Ericales/anatomia & histologia , New Jersey
11.
Proc Natl Acad Sci U S A ; 112(1): 190-5, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25453067

RESUMO

The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants.


Assuntos
Âmbar , Carnivoridade/fisiologia , Droseraceae/anatomia & histologia , Fósseis , Folhas de Planta/anatomia & histologia , Países Bálticos , Extinção Biológica
12.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28381623

RESUMO

The staggering diversity of angiosperms and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers.


Assuntos
Flores/fisiologia , Magnoliopsida , Evolução Biológica , Filogenia
13.
Microorganisms ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374907

RESUMO

The paper searches for new solutions for the development of highbush blueberry orchards (Vaccinium corymbosum L. (1753)) in Western Siberia. All species of the genus Vaccinium display special symbiotic mycorrhizal associations with root systems-ericoid mycorrhiza, which essentially enhances the formation of adventitious and lateral roots. For the first time, we obtained pure cultures of micromycetes associated with the roots of wild species of the family Ericaceae in the Tomsk region, Russia. With regard to the data of molecular genetic analysis of the ITS region sequence, we selected the BR2-1 isolate based on its morphophysiological traits, which was assigned to the genus Leptodophora. Representatives of this genus typically enter into symbiotic relationships with heathers to form ericoid mycorrhizae. We studied the effect of strain BR2-1 on the development of microclones of the highbush blueberry var. Nord blue during their in vitro adaptation and showed its beneficial effect on growth and shoot formation in young plants. Experiments performed using submerged and solid-state methods showed that the most optimal method for commercial production of BR2-1 is cultivation on grain sterilized by boiling, followed by spore washing.

14.
PhytoKeys ; 232: 89-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746325

RESUMO

Recent fieldwork in Terengganu, Peninsular Malaysia, resulted in the collection of an endemic new species of Ardisia, described here as Ardisiarecurvipetala Julius, Siti-Munirah & Utteridge. The species is a member of subgenus (§) Crispardisia on account of its vascularised glands (bacterial nodules) on the leaf margin and the terminal inflorescence on a specialised lateral branch subtended by a normal leaf (rather than a reduced bract-like leaf). Ardisiarecurvipetala is unique amongst all members of §Crispardisia by having leaf margins with both vascularised glands and pustule-like structures and can be further distinguished from other Peninsular Malaysian members of this subgenus by the lamina raised between the leaf venation giving a somewhat bullate appearance, unbranched inflorescences, brownish-red pedicels and recurved corolla lobes, each with a creamy-white apex and a small pink patch at the base. Ardisiarecurvipetala is known only from a single location in Terengganu and its conservation status is assessed as Data Deficient (DD).

15.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836100

RESUMO

Plastid molecular phylogenies that broadly sampled angiosperm lineages imply that carnivorous plants evolved at least 11 times independently in 13 families and 6 orders. Within and between these clades, the different prey capture strategies involving flypaper and pitfall structures arose in parallel with the subsequent evolution of snap traps and suction bladders. Attempts to discern the deep ontological history of carnivorous structures using multigene phylogenies have provided a plastid-level picture of sister relationships at the family level. Here, we present a molecular phylogeny of the angiosperms based on nuclear target sequence capture data (Angiosperms-353 probe set), assembled by the Kew Plant Trees of Life initiative, which aims to complete the tree of life for plants. This phylogeny encompasses all carnivorous and protocarnivorous families, although certain genera such as Philcoxia (Plantaginaceae) are excluded. This study offers a novel nuclear gene-based overview of relationships within and between carnivorous families and genera. Consistent with previous broadly sampled studies, we found that most carnivorous families are not affiliated with any single family. Instead, they emerge as sister groups to large clades comprising multiple non-carnivorous families. Additionally, we explore recent genomic studies across various carnivorous clades that examine the evolution of the carnivorous syndrome in relation to whole-genome duplication, subgenome dominance, small-scale gene duplication, and convergent evolution. Furthermore, we discuss insights into genome size evolution through the lens of carnivorous plant genomes.

16.
PhytoKeys ; 220: 75-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215490

RESUMO

A new species, Lysimachiafenghwaiana G.Hao & H.F.Yan (Primulaceae), from Hunan Province, China, is described and illustrated. This new species belongs to Lysimachiasubgen.Lysimachiasect.Nummularia and is morphologically similar to L.crista-galli and L.carinata, but is distinctive in its leaf shape and arrangement of flowers. It can be further distinguished from L.crista-galli by the absence of calyx lobule spur, and from L.carinata by the black glandular striates in the corolla lobes, rather than punctate.

17.
Mol Ecol Resour ; 22(5): 2018-2037, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35015377

RESUMO

Low-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in nonmodel organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families. Here we introduce the pipeline ORTHOSKIM, which performs in silico capture of targeted sequences from genomic and transcriptomic libraries without assembling whole organelle genomes. ORTHOSKIM proceeds in three steps: (i) global sequence assembly, (ii) mapping against reference sequences and (iii) target sequence extraction; importantly it also includes a range of quality control tests. Different modes are implemented to capture both coding and noncoding regions of cpDNA, mtDNA and rDNA sequences, along with predefined nuclear sequences (e.g., ultraconserved elements) or collections of single-copy orthologue genes. Moreover, aligned DNA matrices are produced for phylogenetic reconstructions, by performing multiple alignments of the captured sequences. While ORTHOSKIM is suitable for any eukaryote, a case study is presented here, using 114 genome-skimming libraries and four RNA sequencing libraries obtained for two plant families, Primulaceae and Ericaceae, the latter being a well-known problematic family for cpDNA assemblies. ORTHOSKIM recovered with high success rates cpDNA, mtDNA and rDNA sequences, well suited to accurately infer evolutionary relationships within these families. ORTHOSKIM is released under a GPL-3 licence and is available at: https://github.com/cpouchon/ORTHOSKIM.


Assuntos
Genoma de Cloroplastos , Transcriptoma , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Genômica/métodos , Filogenia , Análise de Sequência de DNA/métodos
18.
Front Plant Sci ; 13: 1006904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457535

RESUMO

Few incidents of ancient allopolyploidization (polyploidization by hybridization or merging diverged genomes) were previously revealed, although there is significant evidence for the accumulation of whole genome duplications (WGD) in plants. Here, we focused on Ericales, one of the largest and most diverse angiosperm orders with significant ornamental and economic value. Through integrating 24 high-quality whole genome data selected from ~ 200 Superasterids genomes/species and an algorithm of topology-based gene-tree reconciliation, we explored the evolutionary history of in Ericales with ancient complex. We unraveled the allopolyploid origin of Ericales and detected extensive lineage-specific gene loss following the polyploidization. Our study provided a new hypothesis regarding the origin of Ericales and revealed an instructive perspective of gene loss as a pervasive source of genetic variation and adaptive phenotypic diversity in Ericales.

19.
Heliyon ; 8(2): e08839, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169641

RESUMO

More than 12,000 species have been listed under the category of berries, and most of them belong to the orders Ericales and Rosales. Recent phylogenetic studies using molecular data have revealed disagreements with morphological approaches mainly due to diverse floral arrangements, which has proven to be a problem when recognizing species. Therefore, the use of multilocus sequence data is essential to establish robust species boundaries. Although berries are common in Andean cloud forests, diversity of these taxa has not been extensively evaluated in the current context of DNA-based techniques. In this regard, this study characterized morphologically and constructed multilocus phylogenies using four molecular markers, two chloroplast markers (matK and rbcL) and two nuclear markers (ITS and GBSSI-2). Specimens did not show diagnostic features to delimit species of berries. A total of 125 DNA-barcodes of andean berries were newly generated for the four molecular markers. The multilocus phylogenies constructed from these markers allowed the identification of 24 species grouped into the order Ericales (Cavendishia = 1, Clethra = 2, Disterigma = 2, Gaultheria = 4, Thibaudia = 4, Vaccinium = 3) and Rosales (Rubus = 8), incorporating into the Peruvian flora four new records (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale and Rubus glabratus) and revealing the genus Rubus as the most diverse group of berries in the Amazonas region. The results of this study showed congruence in all the multilocus phylogenies, with internal transcribed spacer (ITS) showing the best resolution to distinguish the species. These species were found in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506-3,019 masl from Amazonas region. The integration of morphological and DNA-based methods is recommended to understand the diversity of berries along the Peruvian Andean cloud forest. Abstract in Quechua language Qhawarqan astawan chunka iskayniyuq waranqa especiekuna bayasmanta huch'uy mit'a maypichus hatun rak'i chayaqi ordenkunata Ericaleswan Rosaleswan. Chayraqpi Khuski filogeneticamanta rurachiy allincharqan chanikuna molecularkuna willarqan ayñi rikunawanta morfologicokunamanta, qaylla llapan rantichay t'ika tiktutaywan ñawray, ima kay kaqta qhawacgirqan kay huk champay pachaman riqsiypa especiekunamanta. Hina kaqtintaq, chanikuna qatikipaykunamanta multilocus hat'alliy tiksipmi takyachiypaq saywakuna sinchikuna especiekunamanta. Pana bayaskuna kanku allatinkuna sach'a-sach'api phuyusqa anti runap, ñawran manan karqan achka kamaykuy kunan pacha allwiyaraykupi takyasqakuna ADN. Chayrayku, Noqanchispa taqwi allincharqan huk filogenia multilocus, rarachikupúnmi tawa molecular marcadorkuna, caspa iskay markadorkunawan cloroplastomanta (matK, rbcL) iskay markadorkunawan nuclearkunamanta (ITS, GBSSI-2). Kaykunawan filogeniamanta huniqamuran kikinchay iskay chunka tawayoq especies ima tantaqamuran q'anchis generospi (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), kaykunata huñuyqamuranta piruwanu llacha kamay tawa musuq quillqakamachikuta (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale, Rubus glabratus). Nocaykuq lluqsisqan kuwirinti rikuchirurqan llapankuna filogeniaspi multilocusmanta, kaspa espaciador transcrito interno (ITS) pi rikuchina kutuwi mihur rantichay riqsiypaq especiekunata. Abstract in Awajun language Dekanauwai juú weantug 12000 sag nagkaikiut, júna nejég tente ainawai nuintushkam kuashtai Ericales nuigtu Rosales weantui. Molecularesjai takasmaug juki filogeneticos augtus yamá dekai antugnaiñasmauwa nuna Morfologicosjai disa umikmaug, juka waignawai kuashag yagkunum, juwai dekaata tamanum kuashat utugchata ama nunuka. Nunui asamtai multilocus takasmauwa nujai dekanui wajukut ainawa pipish tumaig aidaush. Tujashkam kuashtai tentee nejég ainaug ikam naig yujagkim amuamua nunuig, wajupá kuashtakit tusajig ashi dekapasjig ADNjain dischamui. Nuni tamaugmak, ii augtusag duka takasé filogenia multilocus dekamua nujai, takasji ipák usumat marcadores molecularesjai, jimag marcadores cloroplastosjai (matK nuigtu rbcL) nuigtu jimag marcadores nuclearesjai (ITS nuigtu GBSSI-2). Juu filogenias dekaji 24 sag nagkaikiut tuwaka 7 generosnug tuwaka awa nunu (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), juui dekanai yamajam ipák usumat ajag perunum awanunu (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale nuigtu Rubus glabratus).

20.
PhytoKeys ; 204: 35-41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760614

RESUMO

Ardisiawhitmorei Julius & Utteridge, sp. nov. (Primulaceae-Myrsinoideae), a member of ArdisiasubgenusStylardisia on account of the style protruding from the closed petals prior to anthesis, is herein described and illustrated as a new species. This new species is easily distinguished by the combination of the inflorescences with a slender rachis branched to two orders, the corolla lobes are abaxially glabrous with usually up to only two gland-dots near the apex and the brochidrodromous secondary veins with double loops near the margin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA