Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 274, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650943

RESUMO

BACKGROUND: The stage, when tissues and organs are growing, is very vulnerable to environmental influences, but it's not clear how exposure during this time causes changes to the epigenome and increases the risk of hormone-related illnesses like uterine fibroids (UFs). METHODS: Developmental reprogramming of myometrial stem cells (MMSCs), the putative origin from which UFs originate, was investigated in vitro and in the Eker rat model by RNA-seq, ChIP-seq, RRBS, gain/loss of function analysis, and luciferase activity assays. RESULTS: When exposed to the endocrine-disrupting chemical (EDC) diethylstilbestrol during Eker rat development, MMSCs undergo a reprogramming of their estrogen-responsive transcriptome. The reprogrammed genes in MMSCs are known as estrogen-responsive genes (ERGs) and are activated by mixed lineage leukemia protein-1 (MLL1) and DNA hypo-methylation mechanisms. Additionally, we observed a notable elevation in the expression of ERGs in MMSCs from Eker rats exposed to natural steroids after developmental exposure to EDC, thereby augmenting estrogen activity. CONCLUSION: Our studies identify epigenetic mechanisms of MLL1/DNA hypo-methylation-mediated MMSC reprogramming. EDC exposure epigenetically targets MMSCs and leads to persistent changes in the expression of a subset of ERGs, imparting a hormonal imprint on the ERGs, resulting in a "hyper-estrogenic" phenotype, and increasing the hormone-dependent risk of UFs.


Assuntos
Disruptores Endócrinos , Leiomioma , Animais , Ratos , Disruptores Endócrinos/toxicidade , Estrogênios , Bioensaio , Leiomioma/induzido quimicamente , Leiomioma/genética , Proteína de Leucina Linfoide-Mieloide , DNA
2.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884959

RESUMO

Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERß, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERß (ßERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in ßERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and ßERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERß regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erß, differentially regulated gene expression in mammary glands in organ cultures.


Assuntos
Antracenos/efeitos adversos , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Glândulas Mamárias Animais/citologia , Técnicas de Cultura de Órgãos/métodos , Piperidinas/efeitos adversos , Lesões Pré-Cancerosas/patologia , Animais , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Transdução de Sinais/efeitos dos fármacos
3.
Genes (Basel) ; 12(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828271

RESUMO

H2A.J is a poorly studied mammalian-specific variant of histone H2A. We used immunohistochemistry to study its localization in various human and mouse tissues. H2A.J showed cell-type specific expression with a striking enrichment in luminal epithelial cells of multiple glands including those of breast, prostate, pancreas, thyroid, stomach, and salivary glands. H2A.J was also highly expressed in many carcinoma cell lines and in particular, those derived from luminal breast and prostate cancer. H2A.J thus appears to be a novel marker for luminal epithelial cancers. Knocking-out the H2AFJ gene in T47D luminal breast cancer cells reduced the expression of several estrogen-responsive genes which may explain its putative tumorigenic role in luminal-B breast cancer.


Assuntos
Glândulas Endócrinas/metabolismo , Células Epiteliais/metabolismo , Histonas/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Glândulas Endócrinas/patologia , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Variação Genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Gravidez , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
4.
Sci Total Environ ; 726: 138505, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32481214

RESUMO

Indoor dust often contains organic contaminants, which adversely impacts human health. In this study, the organic contaminants in the indoor dust from commercial offices and residential houses in Nanjing, China were extracted and their effects on human breast cancer cells (MCF-7) were investigated. Both dust extracts promoted proliferation of MCF-7 cells at ≤24 µg/100 µL, with cell viability being decreased with increasing dust concentrations. Based on LC50, house dust was less toxic than office dust. At 8 µg/100 µL, both extracts caused more MCF-7 cells into active cycling (G2/M + S) and increased intracellular Ca2+ influx, with house dust inducing stronger effects than office dust. Further, the expression of estrogen-responsive genes for TFF1 and EGR3 was enhanced by 3-9 and 4-9 folds, while the expression of cell cycle regulatory genes for cyclin D was enhanced by 2-5 folds. The results suggested that organic dust extract influenced cell viability, altered cell cycle, increased intracellular Ca2+ levels, and activated cell cycle regulatory and estrogen-responsive gene expressions, with house dust showing lower cytotoxicity but higher estrogenic potential on MCF-7 cells. The results indicate the importance of reducing organic contaminants in indoor dust to mitigate their adverse impacts on human health.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Retardadores de Chama/análise , China , Poeira/análise , Estrogênios , Humanos , Extratos Vegetais
5.
J Steroid Biochem Mol Biol ; 195: 105448, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31421232

RESUMO

Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.


Assuntos
Escamas de Animais/efeitos dos fármacos , Bass/genética , Disruptores Endócrinos/farmacologia , Estradiol/farmacologia , Genisteína/farmacologia , Pele/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Escamas de Animais/metabolismo , Animais , Células HEK293 , Humanos , Receptores de Estrogênio/genética , Pele/metabolismo
6.
Data Brief ; 27: 104587, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763380

RESUMO

Fish scales are mineralized structures that play important roles in protection and mineral homeostasis. This tissue expresses multiple estrogen receptor subtypes and can be targeted by estrogens or estrogenic endocrine-disrupting compounds, but their effects are poorly explored. The transcriptome data here presented support the findings reported in the research article "Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier" [1]. Juvenile sea bass were exposed to estradiol and the phytoestrogen genistein for 1 and 5 days, by intraperitoneal injections, and the effects on scale transcript expression were analysed by RNA-seq using an Illumina Hi-seq 1500. The raw reads of the 30 libraries produced have been deposited in the NCBI-SRA database with the project accession number SRP102504. Mapping of RNA-seq reads against the sea bass reference genome using the Cufflinks/TopHat package identified 371 genes that had significant (FDR<0.05) differential expression with the estradiol or genistein treatments in relation to the control scales at each exposure time, 254 of which presented more than a 2-fold change in expression. The identity of the differentially expressed genes was obtained using both automatic and manual annotations against multiple public sequence databases and they were grouped according to their patterns of expression using hierarchical clustering and heat-maps. The biological processes and KEGG pathways most significantly affected by the estradiol and/or genistein treatments were identified using Cytoscape/ClueGO enrichment analyses.

7.
Toxicol Rep ; 5: 1087-1097, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425930

RESUMO

This toxicogenomic study was conducted to predict (post)menopausal human health effects of commercial soy supplementation using ovariectomized rats as a model. Different target tissues (i.e. breast, uterus and sternum) and non-target tissues (i.e. peripheral blood mononuclear cells (PBMC), adipose and liver) of ovariectomized F344 rats exposed to a commercially available soy supplement for eight weeks, were investigated. Changes in gene expression in these tissues were analysed using whole-genome microarray analysis. No correlation in changes in gene expression were observed among different tissues, indicating tissue specific effects of soy isoflavone supplementation. Out of 87 well-established estrogen responsive genes (ERGs), only 19 were found to be significantly regulated (p < 0.05) in different tissues, particularly in liver, adipose and uterus tissues. Surprisingly, no ERGs were significantly regulated in estrogen sensitive breast and sternum tissues. The changes in gene expression in PBMC and adipose tissue in rats were compared with those in (post)menopausal female volunteers who received the same supplement in a similar oral dose and exposure duration in human intervention studies. No correlation in changes in gene expression between rats and humans was observed. Although receiving a similar dose, in humans the plasma levels expressed as total free aglycones were several folds higher than in the rat. Therefore, the overall results in young ovariectomized female F344 rats indicated that using rat transcriptomic data does not provide a suitable model for human risk or benefit analysis of soy isoflavone supplementation.

8.
J Steroid Biochem Mol Biol ; 158: 127-137, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26718875

RESUMO

As in mammals, estrogens in fish are essential for reproduction but also important regulators of mineral homeostasis. Fish scales are a non-conventional target tissue responsive to estradiol and constitute a good model to study mineralized tissues effects and mechanisms of action of estrogenic compounds, including phytoestrogens. The responsiveness to estradiol and the phytoestrogen genistein, was compared between the scales and the liver, a classical estrogenic target, in sea bass (Dicentrarchus labrax). Injection with estradiol and genistein significantly increased circulating vitellogenin (for both compounds) and mineral levels (estradiol only) and genistein also significantly increased scale enzymatic activities suggesting it increased mineral turnover. The repertoire, abundance and estrogenic regulation of nuclear estrogen receptors (ESR1, 2a and 2b) and membrane G-protein receptors (GPER and GPER-like) were different between liver and scales, which presumably explains the tissue-specific changes detected in estrogen-responsive gene expression. In scales changes in gene expression mainly consisted of small rapid increases, while in liver strong, sustained increases/decreases in gene expression occurred. Similar but not overlapping gene expression changes were observed in response to both estradiol and genistein. This study demonstrates for the first time the expression of membrane estrogen receptors in scales and that estrogens and phytoestrogens, to which fish may be exposed in the wild or in aquaculture, both affect liver and mineralized tissues in a tissue-specific manner.


Assuntos
Bass , Estradiol/farmacologia , Estrogênios/farmacologia , Genisteína/farmacologia , Fígado/efeitos dos fármacos , Pele/efeitos dos fármacos , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Bass/sangue , Bass/genética , Bass/metabolismo , Cálcio/sangue , Estradiol/sangue , Perfilação da Expressão Gênica , Hidrocortisona/sangue , Fígado/metabolismo , Fósforo/sangue , Pele/metabolismo , Vitelogeninas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA