Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Genes Dev ; 31(18): 1823-1824, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29051386

RESUMO

Mutations in the tumor suppressor p53 occur in a majority of human cancers. Some gain-of-function (GOF) p53 mutations endow tumor cells with increased metastatic ability, although our understanding of the underlying mechanism remains incomplete. In this issue of Genes & Development, Pourebrahim and colleagues (pp. 1847-1857) develop a new mouse model of osteosarcoma in which a GOF mutant p53 allele is expressed specifically in osteoblasts, while the tumor microenvironment remains wild type for p53, allowing for the study of cell-autonomous functions. In this model, the role of GOF mutant p53 in promoting lung metastasis is shown to be critically dependent on the transcription factor Ets2 and is accompanied by the elevated expression of a cluster of small nucleolar RNAs (snoRNAs).


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Proteínas Mutantes , Mutação , Proteína Proto-Oncogênica c-ets-2/genética , RNA Nucleolar Pequeno , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
2.
Genes Dev ; 31(18): 1847-1857, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021240

RESUMO

TP53 is the most frequently mutated gene in human cancer. Many mutant p53 proteins exert oncogenic gain-of-function (GOF) properties that contribute to metastasis, but the mechanisms mediating these functions remain poorly defined in vivo. To elucidate how mutant p53 GOF drives metastasis, we developed a traceable somatic osteosarcoma mouse model that is initiated with either a single p53 mutation (p53R172H) or p53 loss in osteoblasts. Our study confirmed that p53 mutant mice developed osteosarcomas with increased metastasis as compared with p53-null mice. Comprehensive transcriptome RNA sequencing (RNA-seq) analysis of 16 tumors identified a cluster of small nucleolar RNAs (snoRNAs) that are highly up-regulated in p53 mutant tumors. Regulatory element analysis of these deregulated snoRNA genes identified strong enrichment of a common Ets2 transcription factor-binding site. Homozygous deletion of Ets2 in p53 mutant mice resulted in strong down-regulation of snoRNAs and reversed the prometastatic phenotype of mutant p53 but had no effect on osteosarcoma development, which remained 100% penetrant. In summary, our studies identify Ets2 inhibition as a potential therapeutic vulnerability in p53 mutant osteosarcomas.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/genética , Osteossarcoma/secundário , Proteína Proto-Oncogênica c-ets-2/genética , RNA Nucleolar Pequeno/genética , Proteína Supressora de Tumor p53/genética , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Knockout , Mutação , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteoblastos/patologia , Regulação para Cima
3.
FASEB J ; 37(6): e22937, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171262

RESUMO

Heart failure (HF) is a chronic disease in which the heart is unable to provide enough blood and oxygen to the peripheral tissues. Cardiomyocyte apoptosis and autophagy have been linked to HF progression. However, the underlying mechanism of HF is unknown. In this study, H2 O2 -treated AC16 cells were used as a cell model of HF. The mRNA and protein levels of related genes were examined using RT-qPCR and western blot. Cell viability and apoptosis were assessed using CCK-8 and flow cytometry, respectively. The interactions between ETS2, TUG1, miR-129-5p, and ATG7 were validated by luciferase activity, ChIP, and RNA-Binding protein Immunoprecipitation assays. According to our findings, H2 O2 stimulation increased the expression of ETS2, TUG1, and ATG7 while decreasing the expression of miR-129-5p in AC16 cells. Furthermore, H2 O2 stimulation induced cardiomyocyte apoptosis and autophagy, which were reversed by ETS2 depletion, TUG1 silencing, or miR-129-5p upregulation. Mechanistically, ETS2 promoted TUG1 expression by binding to the TUG1 promoter, and TUG1 sponged miR-129-5p to increase ATG7 expression. Furthermore, TUG1 overexpression reversed ETS2 knockdown-mediated inhibition of cardiomyocyte apoptosis and autophagy and miR-129-5p inhibition abolished TUG1 depletion-mediated suppression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. As presumed, ATG7 overexpression reversed miR-129-5p mimics-mediated repression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. Finally, ETS2 silencing reduced cardiomyocyte apoptosis and autophagy to slow HF progression by targeting the ETS2/TUG1/miR-129-5p/ATG7 axis, which may provide new therapeutic targets for HF treatment.


Assuntos
Insuficiência Cardíaca , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Miócitos Cardíacos/metabolismo , Proliferação de Células/genética , Apoptose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Autofagia/genética , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo
4.
J Med Virol ; 95(4): e28710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975761

RESUMO

Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a syndrome with high short-term mortality. The mechanism of the transcription factor ETS2 in ACLF remains unclear. This study aimed to clarify the molecular basis of ETS2 in ACLF pathogenesis. Peripheral blood mononuclear cells from patients with HBV-ACLF (n = 50) were subjected to RNA sequencing. Transcriptome analysis showed that ETS2 expression was significantly higher in ACLF patients than in patients with chronic liver diseases and healthy subjects (all p < 0.001). Area-under-ROC analysis of ETS2 demonstrated high values for the prediction of 28-/90-day mortality in ACLF patients (0.908/0.773). Significantly upregulated signatures of the innate immune response (monocytes/neutrophils/inflammation-related pathways) were observed in ACLF patients with high ETS2 expression. Myeloid-specific ETS2 deficiency in liver failure mice resulted in deterioration of biofunctions and increased expression of pro-inflammatory cytokines (IL-6/IL-1ß/TNF-α). Knockout of ETS2 in macrophages confirmed the downregulation of IL-6 and IL-1ß caused by both HMGB1 and lipopolysaccharide, and an NF-κB inhibitor reversed the suppressive effect of ETS2. ETS2 is a potential prognostic biomarker of ACLF patients that alleviates liver failure by downregulating the HMGB1-/lipopolysaccharide-triggered inflammatory response and may serve as a therapeutic target for ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Proteína HMGB1 , Hepatite B Crônica , Animais , Camundongos , Insuficiência Hepática Crônica Agudizada/patologia , Vírus da Hepatite B , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Camundongos Knockout , Prognóstico , Humanos
5.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175668

RESUMO

ETS2 repressor factor (ERF) insufficiency causes craniosynostosis (CRS4) in humans and mice. ERF is an ETS domain transcriptional repressor regulated by Erk1/2 phosphorylation via nucleo-cytoplasmic shuttling. Here, we analyze the onset and development of the craniosynostosis phenotype in an Erf-insufficient mouse model and evaluate the potential of the residual Erf activity augmented by pharmacological compounds to ameliorate the disease. Erf insufficiency appears to cause an initially compromised frontal bone formation and subsequent multisuture synostosis, reflecting distinct roles of Erf on the cells that give rise to skull and facial bones. We treated animals with Mek1/2 and nuclear export inhibitors, U0126 and KPT-330, respectively, to increase Erf activity by two independent pathways. We implemented both a low dosage locally over the calvaria and a systemic drug administration scheme to evaluate the possible indirect effects from other systems and minimize toxicity. The treatment of mice with either the inhibitors or the administration scheme alleviated the synostosis phenotype with minimal adverse effects. Our data suggest that the ERF level is an important regulator of cranial bone development and that pharmacological modulation of its activity may represent a valid intervention approach both in CRS4 and in other syndromic forms of craniosynostosis mediated by the FGFR-RAS-ERK-ERF pathway.


Assuntos
Craniossinostoses , Fatores de Transcrição , Animais , Camundongos , Craniossinostoses/tratamento farmacológico , Craniossinostoses/genética , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteínas Repressoras , Crânio
6.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614238

RESUMO

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor ß-1 (TGF-ß1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter. We further demonstrate that TGF-ß1 activated the Ras/C-Raf/MEK/ERK1/2 signaling pathway, leading to phosphorylation of ETS-1 and ETS-2, which consequently upregulates the transcription and expression of Siglec-15. Our study defines a detailed molecular profile of how Siglec-15 is transcriptionally regulated which may offer significant opportunity for therapeutic intervention on HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
7.
Circulation ; 144(1): 34-51, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821668

RESUMO

BACKGROUND: Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK (mitogen-activated protein kinase)/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an interdependent network of signaling cascades. How these pathways interact remains unclear and few direct targets responsible for the prohypertrophic role of NFAT have been described. METHODS: By engineering cardiomyocyte-specific ETS2 (a member of the E26 transformation-specific sequence [ETS] domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were used to evaluate ETS2 function in cell growth. RESULTS: ETS2 is phosphorylated and activated by Erk1/2 on hypertrophic stimulation in both mouse (n=3) and human heart samples (n=8 to 19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n=6 to 11). Silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n=8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP, and Rcan1.4 (n=4). We report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least 2 hypertrophy-stimulated genes: Rcan1.4 and microRNA-223 (=n4 to 6). Suppression of microRNA-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n=6), revealing microRNA-223 as a novel prohypertrophic target of the calcineurin/NFAT and Erk1/2-ETS2 pathways. CONCLUSIONS: Our findings point to a critical role for ETS2 in calcineurin/NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fatores de Transcrição NFATC/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Animais , Calcineurina/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Ligação Proteica/fisiologia , Proteína Proto-Oncogênica c-ets-2/genética , Ratos , Ratos Sprague-Dawley
8.
Am J Hum Genet ; 101(3): 391-403, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886341

RESUMO

In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development.


Assuntos
Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/fisiologia , Deficiências do Desenvolvimento/genética , Transtornos do Crescimento/genética , Mutação , Coluna Vertebral/anormalidades , Coluna Vertebral/patologia , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Cílios/metabolismo , Cílios/patologia , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Transtornos do Crescimento/patologia , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Linhagem , Fosforilação , Transdução de Sinais , Coluna Vertebral/metabolismo
9.
Clin Sci (Lond) ; 134(14): 1973-1990, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32677671

RESUMO

Colorectal cancer (CRC) is often diagnosed at later stages after it has metastasized to other organs. The development of chemoresistance also contributes to a poor prognosis. Therefore, an increased understanding of the metastatic properties of CRC and chemoresistance could improve patient survival. CUGBP elav-like family member 1 (CELF1) is an RNA-binding protein, which is overexpressed in many human malignant tumors. However, the influence of CELF1 in CRC is unclear. V-ets erythroblastosis virus E26 oncogene homologue 2 (ETS2) is an evolutionarily conserved proto-oncogene known to be overexpressed in a variety of human cancers including CRC. In thespresent tudy, we investigated the association between CELF1 and ETS2 in CRC tumorigenesis and oxaliplatin (L-OHP) resistance. We found a positive correlation between the elevated expression of CELF1 and ETS2 in human CRC tissues. Overexpression of CELF1 increased CRC cell proliferation, migration, and invasion in vitro and in a xenograft tumor growth model in vivo, and induced resistance to L-OHP. In contrast, CELF1 knockdown improved the response of CRC cells to L-OHP. Overexpression of ETS2 increased the malignant behavior of CRC cells (growth, migration, and invasion) and L-OHP resistance in vitro. Moreover, L-OHP resistance induced by CELF1 overexpression was reversed by ETS2 knockdown. The results of luciferase reporter and ribonucleoprotein immunoprecipitation assays indicated that CELF1 up-regulates ETS2 by binding to its 3'-UTR. Taken together, our findings have identified that CELF1 regulates ETS2 in a mechanism that results in CRC tumorigenesis and L-OHP resistance, and CELF1 may be a promising target for overcoming chemoresistance in CRC.


Assuntos
Proteínas CELF1/metabolismo , Carcinogênese , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Proto-Oncogênica c-ets-2/metabolismo , Animais , Antineoplásicos , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Oxaliplatina , Proto-Oncogene Mas , Proteína Proto-Oncogênica c-ets-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Biol Int ; 44(4): 958-965, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31872468

RESUMO

Exosomes circulating in biological fluids have the potential to be utilized as cancer biomarkers and are associated with cancer progression and metastasis. MicroRNA (miR)-663b has been found to be elevated in plasma from patients with bladder cancer (BC). However, the functional role of exosomal miR-663b in BC processes remains unknown. Here, we isolated exosomes from plasma and found that the miR-663b level was elevated in exosomes from plasma of patients with BC compared with healthy controls. Exosomal miR-663b from BC cells promoted cell proliferation and epithelial-mesenchymal transition. Moreover, exosomal miR-663b targeted Ets2-repressor factor and acted as a tumor promoter in BC cells. Taken together, our findings suggested that exosomal miR-663b is a promising potential biomarker and target for clinical detection and therapy in BC.


Assuntos
Carcinoma de Células de Transição/metabolismo , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , MicroRNAs/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
11.
Prostate ; 78(12): 896-904, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761525

RESUMO

BACKGROUND: Rare prostate carcinomas aberrantly express p63 and have an immunophenotype intermediate between basal and luminal cells. Here, we performed gene expression profiling on p63-expressing prostatic carcinomas and compared them to usual-type adenocarcinoma. We identify ETS2 as highly expressed in p63-expressing prostatic carcinomas and benign prostate basal cells, with lower expression in luminal cells and primary usual-type adenocarcinomas. METHODS: A total of 8 p63-expressing prostate carcinomas at radical prostatectomy were compared to 358 usual-type adenocarcinomas by gene expression profiling performed on formalin fixed paraffin embedded tumor tissue using Affymetrix 1.0 ST microarrays. Correlation between differentially expressed genes and TP63 expression was performed in 5239 prostate adenocarcinomas available in the Decipher GRID. For validation, ETS2 in situ hybridization was performed on 19 p63-expressing prostate carcinomas and 30 usual-type adenocarcinomas arrayed on tissue microarrays (TMA). RESULTS: By gene expression, p63-expressing prostate carcinomas showed low cell cycle activity and low Decipher prognostic scores, but were predicted to have high Gleason grade compared to usual-type adenocarcinomas by gene expression signatures and morphology. Among the genes over-expressed in p63-expressing carcinoma relative to usual-type adenocarcinoma were known p63-regulated genes, along with ETS2, an ETS family member previously implicated as a prostate cancer tumor suppressor gene. Across several cohorts of prostate samples, ETS2 gene expression was correlated with TP63 expression and was significantly higher in benign prostate compared to usual-type adenocarcinoma. By in situ hybridization, ETS2 gene expression was high in benign basal cells, and low to undetectable in benign luminal cells or usual-type adenocarcinoma. In contrast, ETS2 was highly expressed in 95% (18/19) of p63-expressing prostate carcinomas. CONCLUSIONS: ETS2 is a predominantly basally-expressed gene in the prostate, with low expression in usual-type adenocarcinoma and high expression in p63-expressing carcinomas. Given this pattern, the significance of ETS2 loss by deletion or mutation in usual-type adenocarcinomas is uncertain.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Próstata/química , Neoplasias da Próstata/genética , Proteína Proto-Oncogênica c-ets-2/análise , Fatores de Transcrição/análise , Proteínas Supressoras de Tumor/análise , Adenocarcinoma/química , Adenocarcinoma/genética , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Próstata/química , Prostatectomia , Neoplasias da Próstata/cirurgia , Proteína Proto-Oncogênica c-ets-2/genética , RNA/análise , Análise Serial de Tecidos , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
12.
J Transl Med ; 15(1): 159, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724426

RESUMO

BACKGROUND: ETS2 is a downstream effector of the RAS/RAF/ERK pathway, which plays a critical role in the development of malignant tumor. However, the clinical impact of ETS2 expression in AML remains unknown. METHODS: In this study, we evaluated the prognostic significance of ETS2 expression using two relatively large cohorts of AML patients. RESULTS: In the first cohort, compared to low expression of ETS2 (ETS2 low), high expression of ETS2 (ETS2 high) showed significant shorter OS, EFS and RFS in the current treatments including the allogeneic HCT group (n = 72) and the chemotherapy group (n = 100). Notably, among ETS2 high patients, those received allogeneic HCT had longer OS, EFS and RFS than those with chemotherapy alone (allogeneic HCT, n = 39 vs. chemotherapy, n = 47), but treatment modules play insignificant role in the survival of ETS2 low patients (allogeneic HCT, n = 33 vs. chemotherapy, n = 53). Moreover, gene/microRNA expression data provides insights into the biological changes associated with varying ETS2 expression levels in AML. The prognostic value of ETS2 was further validated in the second AML cohort (n = 329). CONCLUSIONS: Our results indicate that ETS2 high is a poor prognostic factor in AML and may guide treatment decisions towards allogeneic HCT.


Assuntos
Tomada de Decisão Clínica , Leucemia Mieloide Aguda/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico
13.
Behav Genet ; 47(3): 305-322, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28204906

RESUMO

We hypothesize that the trisomy 21 (Down syndrome) is the additive and interactive outcome of the triple copy of different regions of HSA21. Because of the small number of patients with partial trisomy 21, we addressed the question in the Mouse in which three chromosomal regions located on MMU10, MMU17 and MMU16 carries almost all the HSA21 homologs. Male mice from four segmental trisomic strains covering the D21S17-ETS2 (syntenic to MMU16) were examined with an exhaustive battery of cognitive tests, motor tasks and MRI and compared with TS65Dn that encompasses D21S17-ETS2. None of the four strains gather all the impairments (measured by the effect size) of TS65Dn strain. The 152F7 strain was close to TS65Dn for motor behavior and reference memory and the three other strains 230E8, 141G6 and 285E6 for working memory. Episodic memory was impaired only in strain 285E6. The hippocampus and cerebellum reduced sizes that were seen in all the strains indicate that trisomy 21 is not only a hippocampus syndrome but that it results from abnormal interactions between the two structures.


Assuntos
Cerebelo/patologia , Síndrome de Down/genética , Hipocampo/patologia , Animais , Cognição , Síndrome de Down/complicações , Síndrome de Down/patologia , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Atividade Motora/genética
14.
Biochem J ; 473(11): 1629-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27048589

RESUMO

Helicobacter pylori infection is one of the most potent factors leading to gastric carcinogenesis. The seven in absentia homologue (Siah2) is an E3 ubiquitin ligase which has been implicated in various cancers but its role in H. pylori-mediated gastric carcinogenesis has not been established. We investigated the involvement of Siah2 in gastric cancer metastasis which was assessed by invasiveness and migration of H. pylori-infected gastric epithelial cancer cells. Cultured gastric cancer cells (GCCs) MKN45, AGS and Kato III showed significantly induced expression of Siah2, increased invasiveness and migration after being challenged with the pathogen. Siah2-expressing stable cells showed increased invasiveness and migration after H. pylori infection. Siah2 was transcriptionally activated by E26 transformation-specific sequence 2 (ETS2)- and Twist-related protein 1 (Twist1) induced in H. pylori-infected gastric epithelial cells. These transcription factors dose-dependently enhanced the aggressiveness of infected GCCs. Our data suggested that H. pylori-infected GCCs gained cell motility and invasiveness through Siah2 induction. As gastric cancer biopsy samples also showed highly induced expression of ETS2, Twist1 and Siah2 compared with noncancerous gastric tissue, we surmise that ETS2- and Twist1-mediated Siah2 up-regulation has potential diagnostic and prognostic significance and could be targeted for therapeutic purpose.


Assuntos
Infecções por Helicobacter/metabolismo , Proteínas Nucleares/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Neoplasias Gástricas/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Técnicas In Vitro , Proteínas Nucleares/genética , Ligação Proteica , Proteína Proto-Oncogênica c-ets-2/genética , Neoplasias Gástricas/patologia , Proteína 1 Relacionada a Twist/genética , Ubiquitina-Proteína Ligases/genética
15.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257071

RESUMO

Since its discovery as an oncoprotein in 1979, investigation into p53's many identities has completed a full circle and today it is inarguably the most extensively studied tumor suppressor (wild-type p53 form or WTp53) and oncogene (mutant p53 form or mtp53) in cancer research. After the p53 protein was declared "Molecule of the Year" by Science in 1993, the p53 field exploded and a plethora of excellent reviews is now available on every aspect of p53 genetics and functional repertoire in a cell. Nevertheless, new functions of p53 continue to emerge. Here, we discuss a novel mechanism that contributes to mtp53's Gain of Functions GOF (gain-of-function) activities and involves the upregulation of both nucleotide de novo synthesis and nucleoside salvage pathways.


Assuntos
Mutação com Ganho de Função , Nucleotídeos/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Humanos , Proteína Supressora de Tumor p53/metabolismo
16.
Dev Biol ; 397(1): 77-88, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25446535

RESUMO

The ETS superfamily transcription factors Elf5 and Ets2 have both been implicated in the maintenance of the extraembryonic ectoderm (ExE) of the mouse embryo. While homozygous mutants of either gene result in various degrees of ExE tissue loss, heterozygotes are without phenotype. We show here that compound heterozygous mutants exhibit a phenotype intermediate to that of the more severe Elf5-/- and the milder Ets2-/- mutants. Functional redundancy is shown via commonalities in expression patterns, in target gene expression, and by partial rescue of Elf5-/- mutants through overexpressing Ets2 in an Elf5-like fashion. A model is presented suggesting the functional division of the ExE region into a proximal and distal domain based on gene expression patterns and the proximal to distal increasing sensitivity to threshold levels of combined Elf5 and Ets2 activity.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Ectoderma/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína Proto-Oncogênica c-ets-2/fisiologia , Fatores de Transcrição/fisiologia , Alelos , Animais , Animais Geneticamente Modificados , Bovinos , Diferenciação Celular , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Heterozigoto , Camundongos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Interferente Pequeno/metabolismo , Fatores de Tempo
17.
J Biol Chem ; 289(7): 4316-25, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24362029

RESUMO

MicroRNA-155 (miR-155) is highly expressed in many cancers such as B cell lymphomas and myeloid leukemia and inflammatory disorders such as rheumatoid arthritis, atopic dermatitis, and multiple sclerosis. The role of miR-155 as both a promoter of inflammation and an oncogenic agent provides a clear need for miR-155 itself to be stringently regulated. We therefore investigated the transcriptional regulation of miR-155 in response to the respective pro- and anti-inflammatory mediators LPS and IL-10. Bioinformatic analysis revealed Ets binding sites on the miR-155 promoter, and we found that Ets2 is critical for miR-155 induction by LPS. Truncation and mutational analysis of the miR-155 promoter confirmed the role of the Ets2 binding site proximal to the transcription start site for LPS responsiveness. We observed increased binding of Ets2 to the miR-155 promoter and Ets2 deficient mice displayed decreased induction of miR-155 in response to LPS. IL-10 inhibited the induction of Ets2 mRNA and protein by LPS, thereby decreasing Ets2 function on the pri-155 promoter. We have thus identified Ets2 as a key novel regulator in both the positive and negative control of miR-155 in the inflammatory response.


Assuntos
Lipopolissacarídeos/toxicidade , MicroRNAs/biossíntese , Proteína Proto-Oncogênica c-ets-2/metabolismo , Elementos de Resposta , Animais , Linhagem Celular , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/biossíntese , Interleucina-10/genética , Camundongos , MicroRNAs/genética , Proteína Proto-Oncogênica c-ets-2/genética
18.
Biomolecules ; 13(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37892157

RESUMO

ETS2 is a member of the ETS family of transcription factors and has been implicated in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis. The aberrant activation of ETS2 is associated with various human cancers, highlighting its importance as a therapeutic target. Understanding the regulatory mechanisms and interacting partners of ETS2 is crucial for elucidating its precise role in cellular processes and developing novel strategies to modulate its activity. In this study, we conducted binding assays using a human deubiquitinase (DUB) library and identified USP39 as a novel ETS2-binding DUB. USP39 interacts with ETS2 through their respective amino-terminal regions, and the zinc finger and PNT domains are not required for this binding. USP39 deubiquitinates ETS2 without affecting its protein stability. Interestingly, however, USP39 significantly suppresses the transcriptional activity of ETS2. Furthermore, we demonstrated that USP39 leads to a reduction in the nuclear localization of ETS2. Our findings provide valuable insights into the intricate regulatory mechanisms governing ETS2 function. Understanding the interplay between USP39 and ETS2 may have implications for therapeutic interventions targeting ETS2-related diseases, including cancer, where the dysregulation of ETS2 is frequently observed.


Assuntos
Proteína Proto-Oncogênica c-ets-2 , Fatores de Transcrição , Humanos , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células , Proteases Específicas de Ubiquitina
19.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194965, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37524226

RESUMO

Osteoarthritis (OA) is the most common irreversible chronic joint dysfunction disease, which is pathologically characterized by disturbance of articular cartilage homeostasis leading to subsequent inflammatory response and cartilage extracellular matrix (ECM) degradation. Increasing evidence has demonstrated the dysregulation of transcription factors play crucial roles in the occurrence and development of osteoarthritis (OA), but the potential functions and mechanism of most transcription factors in OA has not been completely illuminated. In this study, we identified that transcription factor V-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) was significantly down-regulated in OA cartilage and IL-1ß-induced OA chondrocytes. Functional experiments in vitro demonstrated that the overexpressed ETS2 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and ECM degradation in IL-1ß-induced OA chondrocytes, whereas the knockdown of ETS2 led to the opposite effects. Further in vivo studies have shown that up-regulated ETS2 dramatically ameliorates cartilage injury in DMM-induced OA mice. Mechanical studies have disclosed that DNMT1-mediated downregulation of ETS2 dramatically promotes STAT1 by inhibiting miR-155 transcription, and increased STAT1 initiates a feedback loop that may enhance DNMT1-mediated hypermethylation of ETS2 to inhibit ETS2 expression, thus forming a DNMT1/ETS2/miR-155/STAT1 feedback loop that inhibits MAPK signaling pathways and aggravates OA cartilage injury. In all, our results revealed that overexpression of ETS2 markedly ameliorated OA cartilage injury through the ETS2/miR-155/STAT1/DNMT1 feedback loop, providing a new perspective on the pathogenesis and therapeutic strategies for OA.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Retroalimentação , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Fatores de Transcrição/metabolismo
20.
Genes (Basel) ; 14(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37107558

RESUMO

An inverse comorbidity has been observed between Down syndrome (DS) and solid tumors such as breast and lung cancers, and it is posited that the overexpression of genes within the Down Syndrome Critical Region (DSCR) of human chromosome 21 may account for this phenomenon. By analyzing publicly available DS mouse model transcriptomics data, we aimed to identify DSCR genes that may protect against human breast and lung cancers. Gene expression analyses with GEPIA2 and UALCAN showed that DSCR genes ETS2 and RCAN1 are significantly downregulated in breast and lung cancers, and their expression levels are higher in triple-negative compared to luminal and HER2-positive breast cancers. KM Plotter showed that low levels of ETS2 and RCAN1 are associated with poor survival outcomes in breast and lung cancers. Correlation analyses using OncoDB revealed that both genes are positively correlated in breast and lung cancers, suggesting that they are co-expressed and perhaps have complementary functions. Functional enrichment analyses using LinkedOmics also demonstrated that ETS2 and RCAN1 expression correlates with T-cell receptor signaling, regulation of immunological synapses, TGF-ß signaling, EGFR signaling, IFN-γ signaling, TNF signaling, angiogenesis, and the p53 pathway. Altogether, ETS2 and RCAN1 may be essential for the development of breast and lung cancers. Experimental validation of their biological functions may further unravel their roles in DS and breast and lung cancers.


Assuntos
Síndrome de Down , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Síndrome de Down/epidemiologia , Síndrome de Down/genética , Síndrome de Down/complicações , Fatores de Transcrição , Transdução de Sinais/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA