RESUMO
Spodopotera frugiperda is a worldwide invasive pest that has caused significant economic damage. According to the classical biological control approach, natural enemies that can control invasive pests come from the same area of origin as the pests that have experienced coadaptation processes. However, the new association's approach suggests that local natural enemies are equally capable of controlling invasive pests. Due to the lack of data on the association of S. frugiperda and local natural enemies, research was conducted through a rapid survey to study the diversity of parasitoids associated with S. frugiperda. The results showed 15 parasitoid species associated with S. frugiperda. Four egg parasitoids, eight larval parasitoids, and three larval-pupal parasitoids were found to be associated with S. frugiperda for three years after it was first discovered in Indonesia. Eleven of them are new reports of parasitoids associated with S. frugiperda in Indonesia. A new association was found between S. frugiperda and twelve parasitoid species, consisting of three egg parasitoids (Platygasteridaesp.01, Platygasteridaesp.02, and Telenomus remus), six larval parasitoids (Apanteles sp., Microplitis sp., Campoletis sp., Coccygidium sp., Eupelmus sp., and Stenobracon sp.), and three larval-pupal parasitoids (Brachymeria lasus, B. femorata, and Charops sp.). Telenomus remus is the most dominant parasitoid, with a higher abundance and parasitism rate. The result suggests another method for selecting biological control using the new association approach since local natural enemies can foster quick adaptation to invasive pests.
RESUMO
We report the results of investigations 2010 through 2023 of hymenopteran parasitoids associated with gall midges in Europe. A total of 242 collections of gall midges were made, from each of which one to several parasitoid species emerged, resulting in ca. 200 recorded parasitoid species and 267 host-parasitoid interaction records. The parasitoid families involved were Eulophidae (63 species), Platygastridae (56 species), Torymidae (34 species), Pteromalidae (31 species), Ceraphronidae (5 species), Eupelmidae (4 species), Eurytomidae (2 species) and Encyrtidae (1 species). As many as 159 interactions are reported for the first time, significantly enlarging our knowledge of gall midge - parasitoid interactions on the species level. Even more interesting, 51 host records are for parasitoid species for which no host was previously known. Similarly, 28 species of gall midge are reported as host to named parasitoids for the first time. Additionally, 91 parasitoid records were the first for the country in question. Differences between the rearing methods applied and their suitability for recording species with contrasting life histories, are discussed.
RESUMO
Eriogynapyretorum Westwood is a notorious defoliator of Camphoraofficinarum Nees that causes large economic and ecological losses in planted forests. To understand the importance of suppressing the population of E.pyretorum on natural parasitoids, a four-years investigation was conducted in the field. Four egg parasitoid species Ooencyrtuskuvanae Howard, Trichogrammachionis Ishii, Telenomus sp. and Anastatusdexingensis Sheng & Wang were captured in the wild. One of these is the dominant endoparasitoid species T.chionis, which has a quicker developmental time (8.33 d), more offspring (8.39/egg) and a greater parasitism rate (89.54%). With different elevation distributions, the parasitism rates for Kriechbaumerellalongiscutellaris Qian & He, Gregopimplahimalayensis (Cameron), Theroniadepressa (Gupta) and Xanthopimplakonowi (Krieger) were 17.29%, 2.10%, 4.23% and 0.83%, respectively. Female longevity (47.75 d), offspring (13.36/pupa) and sex ratio (1.16:1) were compared in four pupal parasitoids and K.longiscutellaris was the most abundant species of E.pyretorum in Fujian Province.
RESUMO
Parasitic wasps are abundant and diverse Hymenoptera insects that lay their eggs inside or on the external surface of the host and inject venom into the host to create a more favorable environment for the larvae to survive and regulate the host's immunity, metabolism, and development. But research on the composition of egg parasitoid venom is very limited. In this study, we used a combination of transcriptomic and proteomic approaches to identify the protein fractions of the venom in both eupelmid egg parasitoids, Anastatus japonicus and Mesocomys trabalae. We identified 3422 up-regulated venom gland genes (UVGs) in M. trabalae and 3709 in A. japonicus and analyzed their functions comparatively. By proteome sequencing, we identified 956 potential venom proteins in the venom pouch of M. trabalae, of which 186 were contained in UVGs simultaneously. A total of 766 proteins were detected in the venom of A. japonicus, of which 128 venom proteins were highly expressed in the venom glands. At the same time, the functional analysis of these identified venom proteins was carried out separately. We found the venom proteins in M. trabalae are well known but not in A. japonicus, which may be related to the host range. In conclusion, identifying venom proteins in both egg parasitoid species provides a database for studying the function of egg parasitoid venom and its parasitic mechanism.
RESUMO
The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), an invasive planthopper discovered in Pennsylvania, U.S. in 2014, has spread to many surrounding states despite quarantines and control efforts, and further spread is anticipated. A classical (importation) biological control program would contribute to the long-term management of L. delicatula in the eastern U.S. In its native range of China, Anastatus orientalis (Hymenoptera: Eupelmidae), an egg parasitoid, causes significant mortality. Anastatus orientalis consists of multiple haplotypes that differ in important biological parameters. To delineate the physiological host range of A. orientalis Haplotype C, we completed no-choice and choice testing. No-choice testing of non-target eggs from 36 insect species spanning six orders and 18 families showed that physiologically this haplotype of A. orientalis can develop in a variety of host species eggs from the families Coreidae, Fulgoridae, Pentatomidae, and Saturniidae. Ten of the 16 species that were attacked in the no-choice tests were also attacked in the choice tests. The production of progeny on non-target egg masses was significantly lower than on the controls (L. delicatula egg masses run simultaneously) in the no-choice and choice tests. For the non-target species that were attacked and resulted in female wasp progeny, these females were able to produce their own progeny at the same rate as control females that were reared from the L. delicatula eggs. Larger host eggs corresponded to an increased female-biased sex ratio of the progeny, suggesting that gravid females select them for fertilized eggs. Results from these studies suggest that A. orientalis Haplotype C prefers to parasitize L. delicatula egg masses but is capable of developing in some non-target species.
RESUMO
Anastatus orientalis, native to northern China, is an egg parasitoid wasp of the spotted lanternfly (Lycorma delicatula) and is being tested as a potential biological control agent for invasive L. delicatula in the United States. As a component of these evaluations, live A. orientalis collected from Beijing and Yantai in China were reared in containment in the U.S. These specimens showed different responses in diapause behaviors to rearing conditions used previously by other researchers. To understand the primary mechanism potentially driving discrepancies in important life history traits, we used molecular tools to examine the genetic composition of A. orientalis from China and from South Korea, where the parasitoid has been introduced to aid in the population management of invasive L. delicatula. Molecular analysis of mitochondrial DNA recovered six haplotype groups, which exhibit biased frequency of abundance between collection sites. Some haplotypes are widespread, and others only occur in certain locations. No apparent pattern is observed between wasps collected from different years or emergence seasons. Uncorrected genetic distances between haplotype groups range from 0.44% to 1.44% after controlling for within-group variation. Genetic variance of A. orientalis is characterized by high levels of local diversity that contrasts with a lack of a broad-scale population structure. The introduced Korean population exhibits lower genetic diversity compared to native populations. Additionally, we created iso-female lines for major haplotype groups through laboratory rearing. Differences in diapause behavior were correlated with mitochondrial haplotype. Our results indicate that the observed life history traits in A. orientalis have a genetic base.
RESUMO
As next-generation sequencing technology becomes more mature and the cost of sequencing continues to fall, researchers are increasingly using mitochondrial genomes to explore phylogenetic relationships among different groups. In this study, we sequenced and analyzed the complete mitochondrial genomes of Eupelmus anpingensis and Merostenus sp. We predicted the secondary-structure tRNA genes of these two species and found that 21 of the 22 tRNA genes in Merostenus sp. exhibited typical clover-leaf structures, with trnS1 being the lone exception. In E. anpingensis, we found that, in addition to trnS1, the secondary structure of trnE was also incomplete, with only DHU arms and anticodon loop remaining. In addition, we found that compositional heterogeneity and variable rates of evolution are prevalent in Chalcidoidea. Under the homogeneity model, a Eupelmidae + Encyrtidae sister group relationship was proposed. Different datasets based on the heterogeneity model produced different tree topologies, but all tree topologies contained Chalcididae and Trichogrammatidae in the basal position of the tree. This is the first study to consider the phylogenetic relationships of Chalcidoidea by comparing a heterogeneity model with a homogeneity model.
Assuntos
Genoma Mitocondrial , Himenópteros , Animais , Himenópteros/genética , Filogenia , Sequência de Bases , RNA de Transferência/genéticaRESUMO
Lycorma delicatula (White) (Hemiptera: Fulgoridae), native to China, was first detected in Pennsylvania, U.S. in 2014. This polyphagous pest can feed on over 70 plant species including agricultural crops, like grapes, that have high economic value. Anastatus orientalis Yang and Choi (Hymenoptera: Eupelmidae) is an egg parasitoid associated with L. delicatula egg masses in China that is being evaluated for possible introduction into the U.S. for classical biological control of L. delicatula. In support of this program, the suitability of frozen L. delicatula eggs for parasitization by A. orientalis was evaluated in a quarantine laboratory. Host egg masses held for four different cold storage periods (5°C for <1, 4, 8 and 11 months) were frozen at -40°C for 1 hour or 24 hours and exposed to female A. orientalis for parasitization for seven days. Following this experimental exposure period, rates of L. delicatula nymph emergence and A. orientalis parasitism were assessed for each of the eight different cold storage treatments. Host acceptance and suitability of frozen L. delicatula eggs by A. orientalis was assessed in terms of percentage parasitism, offspring sex ratio, and hind tibia length of emerged parasitoids. Results indicated that L. delicatula nymphs failed to emerge from eggs that were exposed to -40°C for 1 hour and 24 hours and A. orientalis could successfully parasitize L. delicatula eggs regardless of cold storage and freezing treatment. These results add a new tool for long term maintenance of L. delicatula egg masses and rearing methods for egg parasitoids of this pest. Additionally, it may be possible to field deploy sentinel eggs of L. delicatula frozen at -40°C to survey for resident natural enemy species capable of parasitizing eggs of this pest in advance of anticipated L. delicatula invasions into new areas.
RESUMO
Anastatus japonicus Ashmead is a widely used biological control agent against stink bugs that can be successfully reared using the large eggs of the Chinese silkworm. In this study, environmental factors responsible for the induction of diapause in A. japonicus were investigated on host eggs of the Chinese silkworm. A. japonicus exhibited a facultative, mature larval diapause within its host eggs. Second-third instar larva are the most sensitive stages to diapause stimuli. The accumulation of diapause stimuli during all the larval stages maximized the diapause response. A short photoperiod of 10L:14D and temperature of 17 °C led to the occurrence of the highest diapause response, while a long photoperiod (14L:10D) and low temperatures (11 and 14 °C) prevented the diapause. A specific exposure period was required to reach high diapause incidence. Diapausing mature larvae had a significantly higher survival rate after 180 days storage at 10 °C than that of nondiapausing mature larvae. Taken together, results suggest methods that could be exploited in the developmental regulation, field-release pretreatment technology, and long-term storage of A. japonicus.
RESUMO
Acroclisoides sinicus (Hymenoptera: Pteromalidae) was described in 1988 from China, but recent findings in Europe and North America within the framework of Halyomorpha halys (Hemiptera: Pentatomidae) biological control indicate a Holarctic distribution. The few records and fragmented information on A. sinicus are derived from generic observations of other species belonging to the same genus, and its biological and ethological traits are still completely unexplored. It was suspected to be a facultative or obligate hyperparasitoid of many egg parasitoid species (e.g., Scelionidae and Eupelmidae), especially those parasitizing Pentatomidae eggs. Laboratory colonies of A. sinicus were established from specimens collected in the field in Europe and the USA, which allowed us to investigate for the first time the life traits of this somewhat enigmatic species. Our studies confirmed the obligate hyperparasitoid hypothesis for species of Scelionidae but not of Eupelmidae. Laboratory studies revealed that A. sinicus is extremely selective in its host recognition as only the pupal stage of its host species is exploited for parasitization. Taking into consideration its hyperparasitoid habit, the adventive A. sinicus populations in Europe and North America may potentially be severe threats to pentatomid natural control as new components in the trophic chain of pentatomids and their parasitoid guilds.
RESUMO
To support efforts to manage and contain spotted lanternfly (SLF), Lycorma delicatula White (Hemiptera: Fulgoridae), research is being conducted to develop classical biological control methods. To date, two potential biocontrol agents from China have been identified: an egg parasitoid, Anastatus orientalis, and a nymphal parasitoid, Dryinus sinicus Olmi (Hymenoptera: Dryinidae). The research detailed here focuses on investigating the biology and rearing of A. orientalis to assess its potential efficacy in a biocontrol program and optimize its rearing. Female wasps lived significantly longer than male wasps (68 and 23 d, respectively) and females produced an average of 94 total progeny that successfully emerged as adults, with most progeny produced between weeks one and four of the females' lives. The sex ratio of the progeny, with no re-mating, was initially highly female-biased but became progressively more male-biased, likely due to sperm depletion. There was no evidence of additional mortality to SLF eggs from wasp host feeding, but the data were highly variable and the sample size was small. There was high parasitoid emergence when oviposition conditions mimicked mid-September Beijing temperature and photoperiod; however, there was little emergence under 25°C and long-day conditions because most progeny entered a diapause. Storage of parasitized eggs in 5°C chill lowered parasitoid emergence rates. Lastly, there was no evidence that storing field-collected SLF egg masses in 5°C for 10 mo prior to parasitization affected parasitism rates. These findings inform our rearing protocol for A. orientalis and facilitate our testing of this species as a potential biological control agent for SLF.
Assuntos
Hemípteros , Himenópteros , Vespas , Animais , China , Feminino , Masculino , Ninfa , ÓvuloRESUMO
Fifteen parasitoids of Massicus raddei (Blessig Solsky) (Coleoptera, Cerambycidae) are revised. The host is a serious pest of Quercus liaotungensis Koidz. and Q. mongolica Fisch. ex Ledeb. in NE China. All the parasitoids were reared from larvae of M. raddei. Pseudocyanopterus gen. nov. raddeivorus sp. nov., a new braconid wasp is described, and Cyanopterus tricolor (Ivanov) and Eubazus (E.) pallipes are new records for the Chinese fauna. An identification key to the parasitoids of M. raddei in China is provided. Detailed photographs of the parasitoids are provided.
Assuntos
Besouros , Quercus , Vespas , Animais , China , LarvaRESUMO
Thirty-three species of Chalcidoidea (Hymenoptera) are newly recorded from the Maltese Islands, of which, 19 include host data. An updated checklist for the 181 chalcidoid species recorded from Malta is also included, which belong to 17 families as follows: Agaonidae (3), Aphelinidae (21, 1 as new record), Azotidae (1), Chalcididae (8 species, 5 as new records), Encyrtidae (24, 1 as new record), Eulophidae (51, 16 are new records), Eupelmidae (9, 2 as new records), Eurytomidae (6, 1 as new record), Leucospidae (4), Megastigmidae (1), Mymaridae (2), Ormyridae (1), Perilampidae (1 new record), Pteromalidae (39, 5 as new records), Signiphoridae (2), Tetracampidae (1) and Torymidae (7, 1 as new record).
Assuntos
Himenópteros , Animais , Ilhas , MaltaRESUMO
Gibson (2018) recently revised the species of Psomizopelma Gibson, 1995 (Hymenoptera: Eupelmidae), in which P. metallicum was described based on females as one of four new species. In the section on "type material" for this species, one paratype was stated as deposited in the CNC (Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, ON, Canada), whereas the holotype and three other paratypes were stated as deposited in UCFC (University of Central Florida Collection of Arthropods, Orlando, FL, USA). The coden CNC, including the name of the collection and its location was listed in the methods section, but unfortunately the coden UCFC and its relevant collection and location data was inadvertently omitted. As such, under Article 16.4.2 of the International Code of Zoological Nomenclature, the name Psomizopelma metallicum Gibson is not available, because even though a museum coden was given in the publication for where the holotype is deposited, the name and location of the collection was not. The purpose of this correspondence is to correct the oversight in Gibson (2018) and to make the name P. metallicum available. The method of citing holotype label data and abbreviations for structure given below as well as a comprehensive description and illustrations of the species are given in Gibson (2018).