RESUMO
This study investigated the quality markers(Q-markers) of Euphorbiae Humifusae Herba based on the analytic hierarchy process(AHP)-criteria importance through intercriteria correlation(CRITIC) comprehensive weighting method. The Q-markers evaluation system was constructed based on the AHP-CRITIC comprehensive weighting method with quantitative identification of Q-markers of Euphorbiae Humifusae Herba as the target layer. The index weights of the factor layer and the control layer were integrated based on the weights of three indicators(effectiveness, testability, and specificity) in the factor layer calculated by the AHP method and weights of eight indicators(anti-inflammatory inhibitory rate, coagulation shortening rate, anti-cancer inhibition rate, component degree value, component test batch, component average content, content variation coefficient, and number of medicinal materials retrieved according to components) in the control layer calculated by the CRITIC method. The comprehensive score of the chemical components of Euphorbiae Humifusae Herba was weighted and ranked to identify the Q-markers of Euphorbiae Humifusae Herba. In terms of comprehensive scores, top 10 potential Q-markers of Euphorbiae Humifusae Herba were ranked as cynaroside > quercetin > gallic acid > apigenin > luteolin > apigenin-7-O-glucoside > quercetin-7-O-glucoside > ellagic acid > astragalin > ethyl gallate. This study provides a reference for the quality control of Euphorbiae Humifusae Herba and a methodological reference for the quantitative identification of Q-markers of Chinese medicine.
Assuntos
Medicamentos de Ervas Chinesas , Quercetina , Cromatografia Líquida de Alta Pressão/métodos , Apigenina , Controle de Qualidade , Glucosídeos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/químicaRESUMO
Euphorbiae Humifusae Herba (EHH) was provided with medicinal and edible uses, but frequently was adulterated with its closely related species. Hence, this study sought to identify EHH via an integrated approach comprising data from its morphological evaluation, HPLC analysis, comparative plastomes analysis and allele-specific PCR identification. First, the morphological characteristics of 8 subgenus Chamaesyce plants were summarized. Then, HPLC analysis showed that 18 batches of EHH were adulterated or unqualified. Furthermore, the plastomes of the 8 subg. Chamaesyce species were analyzed. Phylogenetic analysis revealed a sister relationship among the 8 subg. Chamaesyce species. The allele-specific PCR authentication was developed by the nucleotide polymorphisms (SNPs) and insertions or deletions (InDels) analysis. The results of allele-specific PCR showed that 27 batches of EHH were adulterated, indicating that the superior sensitivity of molecular authentication over the other methods used. This study provided a reference for rational use and phylogenetic research of EHH.