Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Neuroimage ; 297: 120735, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002787

RESUMO

INTRODUCTION: The motor system undergoes significant development throughout childhood and adolescence. The contingent negative variation (CNV), a brain response reflecting preparation for upcoming actions, offers valuable insights into these changes. However, previous CNV studies of motor preparation have primarily focused on adults, leaving a gap in our understanding of how cortical activity related to motor planning and execution matures in children and adolescents. METHODS: The study addresses this gap by investigating the maturation of motor preparation, pre-activation, and post-processing in 46 healthy, right-handed children and adolescents aged 5-16 years. To overcome the resolution limitations of previous studies, we combined 64-electrode high-density Electroencephalography (EEG) and advanced analysis techniques, such as event-related potentials (ERPs), mu-rhythm desynchronization as well as source localization approaches. The combined analyses provided an in-depth understanding of cortical activity during motor control. RESULTS: Our data showed that children exhibited prolonged reaction times, increased errors, and a distinct pattern of cortical activation compared to adolescents. The findings suggest that the supplementary motor area (SMA) plays a progressively stronger role in motor planning and response evaluation as children age. Additionally, we observe a decrease in sensory processing and post-movement activity with development, potentially reflecting increased efficiency. Interestingly, adolescent subjects, unlike young adults in previous studies, did not yet show contralateral activation of motor areas during the motor preparation phase (late CNV). CONCLUSION: The progressive increase in SMA activation and distinct cortical activation patterns in younger participants suggest immature motor areas. These immature regions might be a primary cause underlying the age-related increase in motor action control efficiency. Additionally, the study demonstrates a prolonged maturation of cortical motor areas, extending well into early adulthood, challenging the assumption that motor control is fully developed by late adolescence. This research, extending fundamental knowledge of motor control development, offers valuable insights that lay the foundation for understanding and treating motor control difficulties.


Assuntos
Eletroencefalografia , Humanos , Adolescente , Criança , Masculino , Feminino , Eletroencefalografia/métodos , Pré-Escolar , Potenciais Evocados/fisiologia , Córtex Motor/fisiologia , Sinais (Psicologia) , Tempo de Reação/fisiologia , Córtex Cerebral/fisiologia , Variação Contingente Negativa/fisiologia , Desempenho Psicomotor/fisiologia , Atividade Motora/fisiologia
2.
Eur J Neurosci ; 60(7): 5750-5763, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39210784

RESUMO

Virtual reality (VR)-guided motor imagery (MI) is a widely used approach for motor rehabilitation, especially for patients with severe motor impairments. Most approaches provide visual guidance from the first-person perspective (1PP). MI training with visual guidance from the third-person perspective (3PP) remains largely unexplored. We argue that 3PP MI training has its own advantages and can supplement 1PP MI. For some movements beyond the view of 1PP, such as shoulder shrugging and other axial movements, MI are suitable performed under 3PP. However, the efficiency of existing paradigms for 3PP MI is unsatisfactory. We speculate that the absence of sense of body ownership (SOO) from 3PP could be one possible factor and hypothesize that 3PP MI could be enhanced by eliciting SOO over a 3PP avatar. Based on our hypothesis, a novel paradigm was proposed to enhance 3PP MI by inducing full-body illusion (FBI) from 3PP, which is similar to the so-called out-of-body experience (OBE), using synchronous visuo-tactile stimulus with VR. The event-related Electroencephalograph (EEG) desynchronization (ERD) at motor-related regions from 31 healthy participants were calculated and compared with a control paradigm without "OBE" FBI induction. This study attempts to enhance 3PP MI with FBI induction. It offers an opportunity to perform MI guided by action observation from 3PP with elicited SOO to the observed avatar. We believe that 3PP MI could provide more possibilities for effective rehabilitation training, when SOO could be elicited to a virtual avatar and the present work demonstrates its viability and effectiveness.


Assuntos
Imaginação , Realidade Virtual , Humanos , Masculino , Feminino , Adulto , Imaginação/fisiologia , Adulto Jovem , Ilusões/fisiologia , Imagem Corporal , Eletroencefalografia/métodos , Movimento/fisiologia
3.
Hum Brain Mapp ; 45(2): e26572, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339905

RESUMO

Tau rhythms are largely defined by sound responsive alpha band (~8-13 Hz) oscillations generated largely within auditory areas of the superior temporal gyri. Studies of tau have mostly employed magnetoencephalography or intracranial recording because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that independent component analysis (ICA) decomposition can be an effective way to identify tau sources and study tau source activities in EEG recordings. Subjects (N = 18) were passively exposed to complex acoustic stimuli while the EEG was recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel processing pipelines entailing use of five levels of high-pass filtering (passbands of 0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes were identified from this data as being localized near the superior temporal gyri with a spectral peak in the 8-13 Hz alpha band. These "tau ICs" showed alpha suppression during sound presentations that was not seen for other commonly observed IC clusters with spectral peaks in the alpha range (e.g., those associated with somatomotor mu, and parietal or occipital alpha). The choice of analysis parameters impacted the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequencies for high-pass filtering resulted in significantly fewer subjects showing a tau IC than more aggressive high-pass filtering. Decomposition using the fastICA algorithm performed the poorest in this regard, while mAMICA performed best. The best combination of filters and ICA model choice was able to identify at least one tau IC in the data of ~94% of the sample. Altogether, the data reveal close similarities between tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use of relatively aggressive high-pass filters and mAMICA decomposition should allow researchers to identify and characterize tau rhythms in a majority of their subjects. We believe adopting the ICA decomposition approach to EEG analysis can increase the rate and range of discoveries related to auditory responsive tau rhythms.


Assuntos
Córtex Auditivo , Ondas Encefálicas , Humanos , Algoritmos , Córtex Auditivo/fisiologia , Magnetoencefalografia
4.
Psychophysiology ; 61(11): e14651, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38997805

RESUMO

Non-invasive brain stimulation techniques offer therapeutic potential for neurological and psychiatric disorders. However, current methods are often limited in their stimulation depth. The novel transcranial temporal interference stimulation (tTIS) aims to overcome this limitation by non-invasively targeting deeper brain regions. In this study, we aimed to evaluate the efficacy of tTIS in modulating alpha activity during a mental rotation task. The effects of tTIS were compared with transcranial alternating current stimulation (tACS) and a sham control. Participants were randomly assigned to a tTIS, tACS, or sham group. They performed alternating blocks of resting and mental rotation tasks before, during, and after stimulation. During the stimulation blocks, participants received 20 min of stimulation adjusted to their individual alpha frequency (IAF). We assessed shifts in resting state alpha power, event-related desynchronization (ERD) of alpha activity during mental rotation, as well as resulting improvements in behavioral performance. Our results indicate tTIS and tACS to be effective in modulating cortical alpha activity during mental rotation, leading to an increase in ERD from pre- to poststimulation as well as compared to sham stimulation. However, this increase in ERD was not correlated with enhanced mental rotation performance, and resting state alpha power remained unchanged. Our findings underscore the complex nature of tTIS and tACS efficacy, indicating that stimulation effects are more observable during active cognitive tasks, while their impacts are less pronounced on resting neuronal systems.


Assuntos
Ritmo alfa , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Ritmo alfa/fisiologia , Feminino , Adulto , Adulto Jovem , Imaginação/fisiologia , Córtex Cerebral/fisiologia , Percepção Espacial/fisiologia , Rotação , Desempenho Psicomotor/fisiologia
5.
Brain Topogr ; 37(5): 907-920, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38722465

RESUMO

This study describes electroencephalography (EEG) measurements during a simple finger movement in people with stroke to understand how temporal patterns of cortical activation and network connectivity align with prolonged muscle contraction at the end of a task. We investigated changes in the EEG temporal patterns in the beta band (13-26 Hz) of people with chronic stroke (N = 10, 7 F/3 M) and controls (N = 10, 7 F/3 M), during and after a cued movement of the index finger. We quantified the change in beta band EEG power relative to baseline as activation at each electrode and the change in task-based phase-locking value (tbPLV) and beta band task-based coherence (tbCoh) relative to baseline coherence as connectivity between EEG electrodes. Finger movements were associated with a decrease in beta power (event related desynchronization (ERD)) followed by an increase in beta power (event related resynchronization (ERS)). The ERS in the post task period was lower in the stroke group (7%), compared to controls (44%) (p < 0.001) and the transition from ERD to ERS was delayed in the stroke group (1.43 s) compared to controls (0.90 s) in the C3 electrode (p = 0.007). In the same post movement period, the stroke group maintained a heightened tbPLV (p = 0.030 for time to baseline of the C3:Fz electrode pair) and did not show the decrease in connectivity in electrode pair C3:Fz that was observed in controls (tbPLV: p = 0.006; tbCoh: p = 0.023). Our results suggest that delays in cortical deactivation patterns following movement coupled with changes in the time course of connectivity between the sensorimotor and frontal cortices in the stroke group might explain clinical observations of prolonged muscle activation in people with stroke. This prolonged activation might be attributed to the combination of cortical reorganization and changes to sensory feedback post-stroke.


Assuntos
Eletroencefalografia , Dedos , Acidente Vascular Cerebral , Humanos , Dedos/fisiopatologia , Dedos/fisiologia , Masculino , Feminino , Acidente Vascular Cerebral/fisiopatologia , Pessoa de Meia-Idade , Idoso , Eletroencefalografia/métodos , Movimento/fisiologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Ritmo beta/fisiologia , Adulto
6.
J Neurophysiol ; 129(5): 1061-1071, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36922160

RESUMO

According to the theory of coordinated reset (CR) stimulation, multifocal bursts of stimuli delivered in a random order with a specific interval may reduce the resonance power of the oscillatory generator in the epicenter. We develop a noninvasive coordinated multifocal burst stimulation (COMBS) with three repetitive transcranial stimulation machines based on CR theory to modulate the target frequency in the primary motor cortex and to assess its effect on motor cortical excitability in separate experiments. Electroencephalography and electromyography were recorded in 16 healthy participants during a finger-tapping task, both before and after the intervention. The resting oscillatory power at the targeted frequency was not changed by COMBS. α-Band power was increased in both preparation and movement stages and the low ß-band power was increased in the movement stage of the finger tapping task. The extent of low ß-band event-related desynchronization was reduced by COMBS. There were no changes in reaction time, but there was a trend for a reduced error rate after COMBS. In another 14 healthy participants, there were no significant changes in cortical excitability before and after COMBS measured by rest motor threshold, short interval intracortical inhibition, short interval intracortical facilitation, and cortical silent period. The result indicates that COMBS may modify the cortical oscillatory power and its perturbation within specific movement stage.NEW & NOTEWORTHY This is the first study, to our knowledge, to apply coordinated reset (CR) neuromodulation to the motor cortex with three repetitive transcranial magnetic stimulation (rTMS) stimulators to assess its effect on cortical oscillation. The results revealed enhancement of α-band power specifically in preparation and movement stages and low ß-band power in the movement stage of a motor task. It postulated that CR stimulation may modify the motor cortical oscillation in the specific movement stages.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Eletroencefalografia/métodos , Eletromiografia
7.
Eur J Neurosci ; 57(9): 1516-1528, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878880

RESUMO

Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and ß-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.


Assuntos
Sincronização Cortical , Eletroencefalografia , Humanos , Sincronização Cortical/fisiologia
8.
Hum Brain Mapp ; 44(5): 2109-2121, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617993

RESUMO

Magnetoencephalography (MEG) is particularly well-suited to the study of human motor cortex oscillatory rhythms and motor control. However, the motor tasks studied to date are largely overly simplistic. This study describes a new approach: a novel event-based simulated drive made operational via MEG compatible driving simulator hardware, paired with differential beamformer methods to characterize the neural correlates of realistic, complex motor activity. We scanned 23 healthy individuals aged 16-23 years (mean age = 19.5, SD = 2.5; 18 males and 5 females, all right-handed) who completed a custom-built repeated trials driving scenario. MEG data were recorded with a 275-channel CTF, and a volumetric magnetic resonance imaging scan was used for MEG source localization. To validate this paradigm, we hypothesized that pedal-use would elicit expected modulation of primary motor responses beta-event-related desynchronization (B-ERD) and movement-related gamma synchrony (MRGS). To confirm the added utility of this paradigm, we hypothesized that the driving task could also probe frontal cognitive control responses (specifically, frontal midline theta [FMT]). Three of 23 participants were removed due to excess head motion (>1.5 cm/trial), confirming feasibility. Nonparametric group analysis revealed significant regions of pedal-use related B-ERD activity (at left precentral foot area, as well as bilateral superior parietal lobe: p < .01 corrected), MRGS (at medial precentral gyrus: p < .01 corrected), and FMT band activity sustained around planned braking (at bilateral superior frontal gyrus: p < .01 corrected). This paradigm overcomes the limits of previous efforts by allowing for characterization of the neural correlates of realistic, complex motor activity in terms of brain regions, frequency bands and their dynamic temporal interplay.


Assuntos
Magnetoencefalografia , Córtex Motor , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Magnetoencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Córtex Pré-Frontal
9.
Cereb Cortex ; 32(8): 1653-1667, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34519333

RESUMO

Theta-gamma coupling (TGC) is a neurophysiologic mechanism that supports working memory (WM). TGC is associated with N-back performance, a WM task. Similar to TGC, theta and alpha event-related synchronization (ERS) and desynchronization (ERD) are also associated with WM. Few studies have examined the longitudinal relationship between WM performance and TGC, ERS, or ERD. This study aimed to determine if changes in WM performance are associated with changes in TGC (primary aim), as well as theta and alpha ERS or ERD over 6 to 12 weeks. Participants included 62 individuals aged 60 and older with no neuropsychiatric conditions or with remitted Major Depressive Disorder (MDD) and no cognitive disorders. TGC, ERS, and ERD were assessed using electroencephalography (EEG) during the N-back task (3-back condition). There was an association between changes in 3-back performance and changes in TGC, alpha ERD and ERS, and theta ERS in the control group. In contrast, there was only a significant association between changes in 3-back performance and changes in TGC in the subgroup with remitted MDD. Our results suggest that the relationship between WM performance and TGC is stable over time, while this is not the case for changes in theta and alpha ERS and ERD.


Assuntos
Transtornos Cognitivos , Transtorno Depressivo Maior , Idoso , Cognição , Sincronização Cortical , Eletroencefalografia , Humanos , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade
10.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050590

RESUMO

Planning goal-directed movements towards different targets is at the basis of common daily activities (e.g., reaching), involving visual, visuomotor, and sensorimotor brain areas. Alpha (8-13 Hz) and beta (13-30 Hz) oscillations are modulated during movement preparation and are implicated in correct motor functioning. However, how brain regions activate and interact during reaching tasks and how brain rhythms are functionally involved in these interactions is still limitedly explored. Here, alpha and beta brain activity and connectivity during reaching preparation are investigated at EEG-source level, considering a network of task-related cortical areas. Sixty-channel EEG was recorded from 20 healthy participants during a delayed center-out reaching task and projected to the cortex to extract the activity of 8 cortical regions per hemisphere (2 occipital, 2 parietal, 3 peri-central, 1 frontal). Then, we analyzed event-related spectral perturbations and directed connectivity, computed via spectral Granger causality and summarized using graph theory centrality indices (in degree, out degree). Results suggest that alpha and beta oscillations are functionally involved in the preparation of reaching in different ways, with the former mediating the inhibition of the ipsilateral sensorimotor areas and disinhibition of visual areas, and the latter coordinating disinhibition of the contralateral sensorimotor and visuomotor areas.


Assuntos
Movimento , Córtex Sensório-Motor , Humanos , Movimento/fisiologia , Córtex Sensório-Motor/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos
11.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047762

RESUMO

The clusterin (CLU) rs11136000 CC genotype is a probable risk factor for Alzheimer's disease (AD). CLU, also known as the apolipoprotein J gene, shares certain properties with the apolipoprotein E (APOE) gene with a well-established relationship with AD. This study aimed to determine whether the electrophysiological patterns of brain activation during the letter fluency task (LFT) depend on CLU genotypes in adults without dementia. Previous studies have shown that LFT performance involves activation of the frontal cortex. We examined EEG alpha1 and alpha2 band desynchronization in the frontal regions during the LFT in 94 nondemented individuals stratified by CLU (rs11136000) genotype. Starting at 30 years of age, CLU CC carriers exhibited more pronounced task-related alpha2 desynchronization than CLU CT&TT carriers in the absence of any differences in LFT performance. In CLU CC carriers, alpha2 desynchronization was significantly correlated with age. Increased task-related activation in individuals at genetic risk for AD may reflect greater "effort" to perform the task and/or neuronal hyperexcitability. The results show that the CLU genotype is associated with neuronal hyperactivation in the frontal cortex during cognitive tasks performances in nondemented individuals, suggesting systematic vulnerability of LFT related cognitive networks in people carrying unfavorable CLU alleles.


Assuntos
Doença de Alzheimer , Clusterina , Adulto , Humanos , Doença de Alzheimer/genética , Encéfalo , Clusterina/genética , Cognição , Eletroencefalografia , Predisposição Genética para Doença , Genótipo , Polimorfismo de Nucleotídeo Único
12.
J Neurophysiol ; 127(2): 559-570, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044809

RESUMO

The Rolandic beta rhythm, at ∼20 Hz, is generated in the somatosensory and motor cortices and is modulated by motor activity and sensory stimuli, causing a short lasting suppression that is followed by a rebound of the beta rhythm. The rebound reflects inhibitory changes in the primary sensorimotor (SMI) cortex, and thus it has been used as a biomarker to follow the recovery of patients with acute stroke. The longitudinal stability of beta rhythm modulation is a prerequisite for its use in long-term follow-ups. We quantified the reproducibility of beta rhythm modulation in healthy subjects in a 1-year-longitudinal study both for MEG and EEG at T0, 1 month (T1-month, n = 8) and 1 year (T1-year, n = 19). The beta rhythm (13-25 Hz) was modulated by fixed tactile and proprioceptive stimulations of the index fingers. The relative peak strengths of beta suppression and rebound did not differ significantly between the sessions, and intersession reproducibility was good or excellent according to intraclass correlation-coefficient values (0.70-0.96) both in MEG and EEG. Our results indicate that the beta rhythm modulation to tactile and proprioceptive stimulation is well reproducible within 1 year. These results support the use of beta modulation as a biomarker in long-term follow-up studies, e.g., to quantify the functional state of the SMI cortex during rehabilitation and drug interventions in various neurological impairments.NEW & NOTEWORTHY The present study demonstrates that beta rhythm modulation is highly reproducible in a group of healthy subjects within a year. Hence, it can be reliably used as a biomarker in longitudinal follow-up studies in different neurological patient groups to reflect changes in the functional state of the sensorimotor cortex.


Assuntos
Ritmo beta/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Magnetoencefalografia , Córtex Motor/fisiologia , Propriocepção/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Eletroencefalografia/normas , Feminino , Humanos , Estudos Longitudinais , Magnetoencefalografia/normas , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
13.
Hum Brain Mapp ; 43(2): 721-732, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612552

RESUMO

Initial romantic attraction (IRA) refers to a series of positive reactions (such as feelings of exhilaration and compulsive thinking) toward desirable potential partners, usually at initial or early-stage encounters when no close relationship has yet been established. After decades of effort, the evolutionary value and key characteristics of IRA are well understood. However, the brain mechanisms associated with IRA are unclear. To address this question, we simulated a mate selection platform similar to that of Tinder. When participants assessed their romantic interest in potential partners on the platform, their electroencephalogram (EEG) signals were recorded in real time. The behavioral data demonstrated that IRA to ideal potential partners mainly reflects the dimensions of arousal and domination. The main study finding was that processing of the individual preference faces that resulted in IRA was associated with a decrease in power in the alpha and lower beta bands over the posterior and anterior sensor clusters; this occurred between 870 and 2,000 ms post-stimulus. Key findings regarding event-related potentials (ERPs) sensitive to individual stimuli preferences were replicated. The results support the hypothesis that brain oscillations in the alpha and lower beta range may reflect modulation in cortical activity associated with individual mate preferences.


Assuntos
Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Córtex Cerebral/fisiologia , Comportamento de Escolha/fisiologia , Sincronização Cortical/fisiologia , Potenciais Evocados/fisiologia , Comportamento Sexual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
14.
Cereb Cortex ; 31(12): 5526-5535, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34231840

RESUMO

Children with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several transcranial magnetic stimulation (TMS) measures have been studied in multiple contexts, we compared ERD and 3 TMS measures (resting motor threshold [RMT], short-interval cortical inhibition [SICI], and task-related up-modulation [TRUM]) within 14 participants with ADHD (ages 8-12 years) and 17 control children. The typically developing (TD) group showed a correlation between greater RMT and greater magnitude of alpha (10-13 Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: Greater TRUM was associated with larger magnitude of ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Eletroencefalografia , Potencial Evocado Motor/fisiologia , Humanos , Movimento , Estimulação Magnética Transcraniana
15.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161683

RESUMO

Tinnitus is an auditory condition that causes humans to hear a sound anytime, anywhere. Chronic and refractory tinnitus is caused by an over synchronization of neurons. Sound has been applied as an alternative treatment to resynchronize neuronal activity. To date, various acoustic therapies have been proposed to treat tinnitus. However, the effect is not yet well understood. Therefore, the objective of this study is to establish an objective methodology using electroencephalography (EEG) signals to measure changes in attentional processes in patients with tinnitus treated with auditory discrimination therapy (ADT). To this aim, first, event-related (de-) synchronization (ERD/ERS) responses were mapped to extract the levels of synchronization related to the auditory recognition event. Second, the deep representations of the scalograms were extracted using a previously trained Convolutional Neural Network (CNN) architecture (MobileNet v2). Third, the deep spectrum features corresponding to the study datasets were analyzed to investigate performance in terms of attention and memory changes. The results proved strong evidence of the feasibility of ADT to treat tinnitus, which is possibly due to attentional redirection.


Assuntos
Zumbido , Estimulação Acústica , Atenção , Percepção Auditiva , Eletroencefalografia , Humanos , Zumbido/terapia
16.
J Neurosci ; 40(50): 9663-9675, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33158966

RESUMO

Neurobehavioral studies in humans have long concentrated on changes in local activity levels during repetitive executions of a task. Spontaneous neural coupling within extended networks has latterly been found to also influence performance. Here, we intend to uncover the underlying mechanisms, the relative importance, and the interaction between spontaneous coupling and task-induced activations. To do so, we recorded two groups of healthy participants (male and female) during rest and while they performed either a visual perception or a motor sequence task. We demonstrate that, for both tasks, stronger activations during the task as well as greater network coupling through spontaneous α rhythms at rest predict performance. However, high performers present an absence of classical task-induced activations and, instead, stronger spontaneous network coupling. Activations were thus a compensation mechanism needed only in subjects with lower spontaneous network interactions. This challenges classical models of neural processing and calls for new strategies in attempts to train and enhance performance.SIGNIFICANCE STATEMENT Our findings challenge the widely accepted notion that task-induced activations are of paramount importance for behavior. This will have an important impact on interpretations of human neurobehavioral research. They further link the widely used techniques of quantifying network communication in the brain with classical neuroscience methods and demonstrate possible ways of how network communication influences human behavior. Traditional training methods attempt to enhance neural activations through task repetitions. Our findings suggest a more efficient neural target for learning: enhancing spontaneous neural interactions. This will be of major interest for a large variety of scientific fields with very broad applications in schools, work, and others.


Assuntos
Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Análise e Desempenho de Tarefas , Adulto , Atenção/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
17.
Neuroimage ; 242: 118463, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384910

RESUMO

Neurofeedback (NF) in combination with motor imagery (MI) can be used for training individuals to volitionally modulate sensorimotor activity without producing overt movements. However, until now, NF methods were of limited utility for mentally training specific hand and finger actions. Here we employed a novel transcranial magnetic stimulation (TMS) based protocol to probe and detect MI-induced motor activity patterns in the primary motor cortex (M1) with the aim to reinforce selective facilitation of single finger representations. We showed that TMS-NF training but not MI training with uninformative feedback enabled participants to selectively upregulate corticomotor excitability of one finger, while simultaneously downregulating excitability of other finger representations within the same hand. Successful finger individuation during MI was accompanied by strong desynchronization of sensorimotor brain rhythms, particularly in the beta band, as measured by electroencephalography. Additionally, informative TMS-NF promoted more dissociable EEG activation patterns underlying single finger MI, when compared to MI of the control group where no such feedback was provided. Our findings suggest that selective TMS-NF is a new approach for acquiring the ability of finger individuation even if no overt movements are performed. This might offer new treatment modality for rehabilitation after stroke or spinal cord injury.


Assuntos
Imaginação/fisiologia , Atividade Motora/fisiologia , Neurorretroalimentação/métodos , Estimulação Magnética Transcraniana/métodos , Adulto , Interfaces Cérebro-Computador , Eletroencefalografia , Eletromiografia , Potencial Evocado Motor , Feminino , Dedos , Humanos , Individuação , Masculino , Córtex Motor/fisiologia , Movimento , Músculo Esquelético/fisiologia , Adulto Jovem
18.
Neuroimage ; 241: 118431, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329723

RESUMO

Mechanical vibration of muscle tendons in specific frequencies - termed functional proprioceptive stimulation (FPS) - has the ability to induce the illusion of a movement which is congruent with a lengthening of the vibrated tendon and muscle. The majority of previous reports of the brain correlates of this illusion are based on functional neuroimaging. Contrary to the electroencephalogram (EEG) however, such technologies are not suitable for bedside or ambulant use. While a handful of studies have shown EEG changes during FPS, it remains underinvestigated whether these changes were due to the perceived illusion or the perceived vibration. Here, we aimed at disentangling the neural correlates of the illusory movement from those produced by the vibration sensation by comparing the neural responses to two vibration types, one that did and one that did not elicit an illusion. We recruited 40 naïve participants, 20 for the EEG experiment and 20 for a supporting behavioral study, who received functional tendon co-vibration on the biceps and triceps tendon at their left elbow, pseudo-randomly switching between the illusion and non-illusion trials. Time-frequency decomposition uncovered a strong and lasting event-related desynchronization (ERD) in the mu and beta band in both conditions, suggesting a strong somatosensory response to the vibration. Additionally, the analysis of the evoked potentials revealed a significant difference between the two experimental conditions from 310 to 990ms post stimulus onset. Training classifiers on the frequency-based and voltage-based correlates of illusion perception yielded above chance accuracies for 17 and 13 out of the 20 subjects respectively. Our findings show that FPS-induced illusions produce EEG correlates that are distinct from a vibration-based control and which can be classified reliably in a large number of participants. These results encourage pursuing EEG-based detection of kinesthetic illusions as a tool for clinical use, e.g., to uncover aspects of cognitive perception in unresponsive patients.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Ilusões/fisiologia , Movimento/fisiologia , Tendões/fisiologia , Vibração , Adulto , Feminino , Humanos , Masculino , Estimulação Física/métodos , Propriocepção/fisiologia , Adulto Jovem
19.
Hum Brain Mapp ; 42(12): 3993-4021, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34101939

RESUMO

Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a very promising non-invasive neuroimaging technique. However, EEG data obtained from the simultaneous EEG-fMRI are strongly influenced by MRI-related artefacts, namely gradient artefacts (GA) and ballistocardiogram (BCG) artefacts. When compared to the GA correction, the BCG correction is more challenging to remove due to its inherent variabilities and dynamic changes over time. The standard BCG correction (i.e., average artefact subtraction [AAS]), require detecting cardiac pulses from simultaneous electrocardiography (ECG) recording. However, ECG signals are also distorted and will become problematic for detecting reliable cardiac peaks. In this study, we focused on a beamforming spatial filtering technique to attenuate all unwanted source activities outside of the brain. Specifically, we applied the beamforming technique to attenuate the BCG artefact in EEG-fMRI, and also to recover meaningful task-based neural signals during an attentional network task (ANT) which required participants to identify visual cues and respond accurately. We analysed EEG-fMRI data in 20 healthy participants during the ANT, and compared four different BCG corrections (non-BCG corrected, AAS BCG corrected, beamforming + AAS BCG corrected, beamforming BCG corrected). We demonstrated that the beamforming approach did not only significantly reduce the BCG artefacts, but also significantly recovered the expected task-based brain activity when compared to the standard AAS correction. This data-driven beamforming technique appears promising especially for longer data acquisition of sleep and resting EEG-fMRI. Our findings extend previous work regarding the recovery of meaningful EEG signals by an optimized suppression of MRI-related artefacts.


Assuntos
Balistocardiografia/normas , Eletroencefalografia/normas , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Adulto , Artefatos , Balistocardiografia/métodos , Eletroencefalografia/métodos , Feminino , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
20.
Cereb Cortex ; 30(12): 6284-6295, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32776096

RESUMO

Subliminal stimulation alters conscious perception - a potential mechanism is the modulation of cortical background rhythms especially in the alpha range. Here, in the human somatosensory domain, we assessed effects of subthreshold (imperceptible) electrical finger nerve stimulation - either presented as single pulses or as brief (1 s) 7 Hz pulse trains-on mu-alpha rhythm and perceptual performance. In electroencephalography, subthreshold single pulses transiently (~150-350 ms poststimulus) increased mu activity (event-related synchronization), while, interestingly, subthreshold trains led to prolonged (>1 s) mu desynchronization. In psychophysics, detection of near-threshold target stimuli was consistently reduced when presented together with subthreshold trains (at three delays), whereas for targets paired with subthreshold single pulses detection remained unaffected (30 and 180 ms) or was even elevated (60 ms). Though both imperceptible, single pulses and pulse trains exerted opposite effects on neural signaling and perception. We suggest that the common neural basis is preferential activation of cortical inhibitory interneurons. While the inhibitory impact of a subthreshold single pulse (reflected by mu synchronization) is not psychophysically detectable-rather perception may be facilitated-repetition of the same subthreshold pulse shifts the excitation-inhibition balance toward an inhibitory cortical state (reflected by perceptual impediment) accompanied by mu desynchronization. These differential findings provide novel insights on the notion of alpha activity mediating functional inhibition.


Assuntos
Ondas Encefálicas , Encéfalo/fisiologia , Estimulação Subliminar , Percepção do Tato/fisiologia , Adolescente , Adulto , Ritmo alfa , Estimulação Elétrica , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Física , Psicofísica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA