Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 479(5): 629-640, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175311

RESUMO

Iodide (I-) is crucial to thyroid function, and its regulation in thyrocytes involves ion transporters and reactive oxygen species (ROS). However, the extent of 2Cl-/H+ exchanger (ClC-3) involvement in the iodide (I-) efflux from thyrocytes remains unclear. Therefore, we examined the effects of ClC-3 on I- efflux. ClC-3 expression was found to significantly alter the serum TT3 and TT4 concentrations in mice. We further found that excess I- stimulation affected ClC-3 expression, distribution, and I- efflux in FRTL-5 cells. Immunofluorescence analyses indicated that ClC-3 mainly accumulated in the cell membrane and co-localized with ß-tubulins after 24 h of excess I- treatment, and that this process depended on ROS production. Thus, ClC-3 may be involved in I- efflux at the apical pole of thyrocytes via excess I--induced ROS production and ß-tubulin polymerization. Our results reveal novel insights into the role of ClC-3 in I- transport and thyroid function.


Assuntos
Canais de Cloreto/metabolismo , Células Epiteliais da Tireoide , Animais , Transporte Biológico , Iodetos , Camundongos , Prótons , Espécies Reativas de Oxigênio , Tubulina (Proteína)
2.
Biol Trace Elem Res ; 172(1): 193-200, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26660892

RESUMO

It is well known that excess iodide can lead to thyroid colloid retention, a classic characteristic of iodide-induced goiter. However, the mechanism has not been fully unrevealed. Iodide plays an important role in thyroid function at multiple steps of thyroid colloid synthesis and transport among which sodium/iodide symporter (NIS) and pendrin are essential. In our study, we fed female BALB/c mice with different concentrations of high-iodine water including group A (control group, 0 µg/L), group B (1500 µg/L), group C (3000 µg/L), group D (6000 µg/L), and group E (12,000 µg/L). After 7 months of feeding, we found that excess iodide could lead to different degrees of thyroid colloid retention. Besides, NIS and pendrin expression were downregulated in the highest dose group. The thyroid iodide intake function detected by urine iodine assay and thyroidal (125)I experiments showed that the urine level of iodine increased, while the iodine intake rate decreased when the concentration of iodide used in feeding water increased (all p < 0.05 vs. control group). In addition, transmission electron microscopy (TEM) indicated a reduction in the number of intracellular mitochondria of thyroid cells. Based on these findings, we concluded that the occurrence of thyroid colloid retention exacerbated by excess iodide was associated with the suppression of NIS and pendrin expression, providing an additional insight of the potential mechanism of action of excess iodide on thyroid gland.


Assuntos
Proteínas de Transporte de Ânions/antagonistas & inibidores , Iodetos/farmacologia , Simportadores/antagonistas & inibidores , Glândula Tireoide/efeitos dos fármacos , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Coloides/química , Coloides/metabolismo , Feminino , Iodetos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Transportadores de Sulfato , Simportadores/genética , Simportadores/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
3.
Mol Cell Endocrinol ; 426: 73-90, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26872612

RESUMO

Transcriptional mechanisms associated with iodide-induced downregulation of NIS expression remain uncertain. Here, we further analyzed the transcriptional regulation of NIS gene expression by excess iodide using PCCl3 cells. NIS promoter activity was reduced in cells treated for 12-24 h with 10(-5) to 10(-3) M NaI. Site-directed mutagenesis of Pax8 and NF-κB cis-acting elements abrogated the iodide-induced NIS transcription repression. Indeed, excess iodide (10(-3) M) excluded Pax8 from the nucleus, decreased p65 total expression and reduced their transcriptional activity. Importantly, p65-Pax8 physical interaction and binding to NIS upstream enhancer were reduced upon iodide treatment. PI3K/Akt pathway activation by iodide-induced ROS production is involved in the transcriptional repression of NIS expression. In conclusion, the results indicated that excess iodide transcriptionally represses NIS gene expression through the impairment of Pax8 and p65 transcriptional activity. Furthermore, the data presented herein described novel roles for PI3K/Akt signaling pathway and oxidative status in the thyroid autoregulatory phenomenon.


Assuntos
Iodeto de Sódio/farmacologia , Simportadores/genética , Transcrição Gênica , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Regulação para Baixo , Ativação Enzimática , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fator de Transcrição PAX8 , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Simportadores/metabolismo , Tireotropina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA