Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant J ; 116(1): 100-111, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344990

RESUMO

Exo70B1 is a protein subunit of the exocyst complex with a crucial role in a variety of cell mechanisms, including immune responses against pathogens. The calcium-dependent kinase 5 (CPK5) of Arabidopsis thaliana (hereafter Arabidopsis), phosphorylates AtExo70B1 upon functional disruption. We previously reported that, the Xanthomonas campestris pv. campestris effector XopP compromises AtExo70B1, while bypassing the host's hypersensitive response, in a way that is still unclear. Herein we designed an experimental approach, which includes biophysical, biochemical, and molecular assays and is based on structural and functional predictions, utilizing AplhaFold and DALI online servers, respectively, in order to characterize the in vivo XccXopP function. The interaction between AtExo70B1 and XccXopP was found very stable in high temperatures, while AtExo70B1 appeared to be phosphorylated at XccXopP-expressing transgenic Arabidopsis. XccXopP revealed similarities with known mammalian kinases and phosphorylated AtExo70B1 at Ser107, Ser111, Ser248, Thr309, and Thr364. Moreover, XccXopP protected AtExo70B1 from AtCPK5 phosphorylation. Together these findings show that XccXopP is an effector, which not only functions as a novel serine/threonine kinase upon its host target AtExo70B1 but also protects the latter from the innate AtCPK5 phosphorylation, in order to bypass the host's immune responses. Data are available via ProteomeXchange with the identifier PXD041405.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xanthomonas campestris , Xanthomonas campestris/metabolismo , Arabidopsis/metabolismo , Fosforilação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Plant Biotechnol J ; 22(2): 347-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37795910

RESUMO

Plant defence against pathogens generally occurs at the expense of growth and yield. Uncoupling the inverse relationship between growth and defence is of great importance for crop breeding, while the underlying genes and regulatory mechanisms remain largely elusive. The exocytosis complex was shown to play an important role in the trafficking of receptor kinases (RKs) to the plasma membrane (PM). Here, we found a Cucumis sativus exocytosis subunit Exo70B (CsExo70B) regulates the abundance of both development and defence RKs at the PM to promote fruit elongation and disease resistance in cucumber. Knockout of CsExo70B resulted in shorter fruit and susceptibility to pathogens. Mechanistically, CsExo70B associates with the developmental RK CsERECTA, which promotes fruit longitudinal growth in cucumber, and contributes to its accumulation at the PM. On the other side, CsExo70B confers to the spectrum resistance to pathogens in cucumber via a similar regulatory module of defence RKs. Moreover, CsExo70B overexpression lines showed an increased fruit yield as well as disease resistance. Collectively, our work reveals a regulatory mechanism that CsExo70B promotes both fruit elongation and disease resistance by maintaining appropriate RK levels at the PM and thus provides a possible strategy for superior cucumber breeding with high yield and robust pathogen resistance.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Frutas/metabolismo , Resistência à Doença/genética , Melhoramento Vegetal , Membrana Celular
3.
New Phytol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387122

RESUMO

Marchantia polymorpha, occupying a basal position in the monophyletic assemblage of land plants, displays a notable expansion of plant U-box (PUB) proteins compared with those in animals. We elucidated the roles of MpPUB9 in regulating salt stress tolerance in M. polymorpha. MpPUB9 expression was rapidly induced by high salinity and dehydration. MpPUB9 possessed an intact U-box domain in the N-terminus. MpPUB9-Citrine localized to punctate structures and was peripherally associated with microsomal membranes. Phenotypic analyses demonstrate that the hyponastic and epinastic thallus growth phenotypes, which were induced by the overexpression and suppression of MpPUB9, may provoke salt stress-resistant and -susceptible phenotypes, respectively. MpPUB9 was also found to directly interact with the exocyst protein MpEXO70.1, leading to its ubiquitination. Under high-salinity conditions, though the stability of MpPUB9 was dramatically increased, MpEXO70.1 showed slightly faster turnover rates. Transcriptome analyses showed that salt treatment and the overexpression of MpPUB9 co-upregulated the genes related to the modulation of H2O2 and cell wall organization. Overall, our results suggest that MpPUB9 plays a crucial role in the positive regulation of salt stress tolerance, resulting from its interaction with MpEXO70.1 and modulating turnover of the protein under high-salt conditions via the coordination of UPS with autophagy.

4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34470819

RESUMO

Polarized exocytosis is essential for many vital processes in eukaryotic cells, where secretory vesicles are targeted to distinct plasma membrane domains characterized by their specific lipid-protein composition. Heterooctameric protein complex exocyst facilitates the vesicle tethering to a target membrane and is a principal cell polarity regulator in eukaryotes. The architecture and molecular details of plant exocyst and its membrane recruitment have remained elusive. Here, we show that the plant exocyst consists of two modules formed by SEC3-SEC5-SEC6-SEC8 and SEC10-SEC15-EXO70-EXO84 subunits, respectively, documenting the evolutionarily conserved architecture within eukaryotes. In contrast to yeast and mammals, the two modules are linked by a plant-specific SEC3-EXO70 interaction, and plant EXO70 functionally dominates over SEC3 in the exocyst recruitment to the plasma membrane. Using an interdisciplinary approach, we found that the C-terminal part of EXO70A1, the canonical EXO70 isoform in Arabidopsis, is critical for this process. In contrast to yeast and animal cells, the EXO70A1 interaction with the plasma membrane is mediated by multiple anionic phospholipids uniquely contributing to the plant plasma membrane identity. We identified several evolutionary conserved EXO70 lysine residues and experimentally proved their importance for the EXO70A1-phospholipid interactions. Collectively, our work has uncovered plant-specific features of the exocyst complex and emphasized the importance of the specific protein-lipid code for the recruitment of peripheral membrane proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Citoplasma/metabolismo , Exocitose , Proteômica/métodos
5.
Dev Biol ; 492: 1-13, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162553

RESUMO

The exocyst complex is an important regulator of intracellular trafficking and tethers secretory vesicles to the plasma membrane. Understanding of its role in neuron outgrowth remains incomplete, and previous studies have come to different conclusions about its importance for axon and dendrite growth, particularly in vivo. To investigate exocyst function in vivo we used Drosophila sensory neurons as a model system. To bypass early developmental requirements in other cell types, we used neuron-specific RNAi to target seven exocyst subunits. Initial neuronal development proceeded normally in these backgrounds, however, we considered this could be due to residual exocyst function. To probe neuronal growth capacity at later times after RNAi initiation, we used laser microsurgery to remove axons or dendrites and prompt regrowth. Exocyst subunit RNAi reduced axon regeneration, although new axons could be specified. In control neurons, a vesicle trafficking marker often concentrated in the new axon, but this pattern was disrupted in Sec6 RNAi neurons. Dendrite regeneration was also severely reduced by exocyst RNAi, even though the trafficking marker did not accumulate in a strongly polarized manner during normal dendrite regeneration. The requirement for the exocyst was not limited to injury contexts as exocyst subunit RNAi eliminated dendrite regrowth after developmental pruning. We conclude that the exocyst is required for injury-induced and developmental neurite outgrowth, but that residual protein function can easily mask this requirement.


Assuntos
Axônios , Exocitose , Exocitose/fisiologia , Neuritos , Regeneração Nervosa , Membrana Celular/metabolismo
6.
Mol Plant Microbe Interact ; 36(4): 235-244, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36867731

RESUMO

The arbuscular mycorrhizal (AM) symbiosis is an ancient and highly conserved mutualism between plant and fungal symbionts, in which a highly specialized membrane-delimited fungal arbuscule acts as the symbiotic interface for nutrient exchange and signaling. As a ubiquitous means of biomolecule transport and intercellular communication, extracellular vesicles (EVs) are likely to play a role in this intimate cross-kingdom symbiosis, yet, there is a lack of research investigating the importance of EVs in AM symbiosis despite known roles in microbial interactions in both animal and plant pathosystems. Clarifying the current understanding of EVs in this symbiosis in light of recent ultrastructural observations is paramount to guiding future investigations in the field, and, to this end, this review summarizes recent research investigating these areas. Namely, this review discusses the available knowledge regarding biogenesis pathways and marker proteins associated with the various plant EV subclasses, EV trafficking pathways during symbiosis, and the endocytic mechanisms implicated in the uptake of these EVs. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Vesículas Extracelulares , Micorrizas , Simbiose , Plantas/microbiologia , Transporte Biológico , Vesículas Extracelulares/metabolismo , Raízes de Plantas
7.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446106

RESUMO

Cucumber (Cucumis sativus L.) is an important vegetable worldwide, but its yield is affected by a wide range of pathogens and pests. As the major subunit of the exocyst complex, the roles of Exo70 members have been shown in Arabidopsis and rice, but their function are unknown in cucumber. Here, we identified 18 CsExo70 members in cucumber, which were divided into three groups (Exo70.1-Exo70.3) and nine subgroups (Exo70A-Exo70I) based on the phylogenetic tree. Subsequently, systematical analyses were performed, including collinearity, gene structure, cis-acting elements, conserved motifs, expression patterns, and subcellular localization. Our results showed that CsExo70 genes were generally expressed in all tissues, and CsExo70C1 and CsExo70C2 were highly expressed in the stamen. Moreover, the expression levels of most CsExo70 genes were induced by Pseudomonas syringae pv. lachrymans (Psl) and Fusarium oxysporum f. sp. cucumerinum Owen (Foc), especially CsExo70E2 and CsExo70H3. In addition, these CsExo70s displayed similar location patterns with discrete and punctate signals in the cytoplasm. Together, our results indicate that CsExo70 members may be involved in plant development and resistance, and provide a reference for future in-depth studies of Exo70 genes in cucumber.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Filogenia , Sequências Reguladoras de Ácido Nucleico , Citoplasma
8.
Plant J ; 105(5): 1179-1191, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33231904

RESUMO

The exocyst is a key factor in vesicle transport and is involved in cell secretion, cell growth, cell division and other cytological processes in eukaryotes. EXO70 is the key exocyst subunit. We obtained a gene, SHORT-ROOT 1 (SR1), through map-based cloning and genetic complementation. SR1 is a conserved protein with an EXO70 domain in plants. SR1 mutation affected the whole root-development process: producing shorter radicles, adventitious roots and lateral roots, and demonstrating abnormal xylem development, resulting in dwarfing and reduced water potential and moisture content. SR1 was largely expressed in the roots, but only in developing root meristems and tracheary elements. The shortness of the sr1 mutant roots was caused by the presence of fewer meristem cells. The in situ histone H4 expression patterns confirmed that cell proliferation during root development was impaired. Tracheary element dysplasia was caused by marked decreases in the inner diameters of and distances between the perforations of adjacent tracheary elements. The membrane transport of sr1 mutants was blocked, affecting cell division in the root apical region and the development of root tracheary elements. The study of SR1 will deepen our understanding of the function of EXO70 genes in Oryza sativa (rice) and guide future studies on the molecular mechanisms involved in plant root development.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
9.
Plant J ; 108(3): 672-689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34396631

RESUMO

The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR-NBS2 (TN2), a truncated intracellular nucleotide-binding and leucine-rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2-activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1-3 were independent of the full-length NLR SOC3 and its closest homolog SOC3-LIKE 1 (SOC3-L1). Additionally, knocking out SOC3-L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1-2 (chs1-2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1-3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1-3. Furthermore, overexpression of TN2 also led to ADR1-dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2-triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidade , Autoimunidade , Morte Celular , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/imunologia , Proteínas de Transporte Vesicular/metabolismo
10.
Biochem Biophys Res Commun ; 606: 156-162, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35358840

RESUMO

Plasma membrane damage and repair frequently happen in cells. A critical process underlying plasma membrane repair is to redirect repair factors, such as protein kinase C and the exocyst complex, from the polarized site to the damage site. However, the mechanism underlying the repair factor delivery to the damage site remains unknown. Here, we demonstrate that clathrin-mediated trafficking of repair factors is involved in plasma membrane/cell wall repair in budding yeast. Using laser-induced plasma membrane/cell wall damage assay, we identified phospholipid flippases, Lem3-Dnf1/Dnf2 and Cdc50-Drs2, as essential clathrin cargos for plasma membrane/cell wall repair. We found that flippase impairment significantly compromised the recruitment of exocyst Exo70 to the damage site. In contrast, the recruitment of protein kinase C (Pkc1) was only mildly compromised. Taken together, clathrin-mediated trafficking of the phospholipid flippases is critical for the recruitment of exocyst to the damage site. Mechanisms to redirect exocyst via the clathrin and flippase-mediated pathways may be a general feature of effective plasma membrane repair in polarized cells.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Clatrina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfolipídeos/metabolismo , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
11.
Biochem Biophys Res Commun ; 555: 40-45, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33812057

RESUMO

RIN4 is an important immunomodulator in Arabidopsis, which is targeted by multiple pathogenic effectors, and consequently guarded by different immune receptors. Although RIN4 plays a significant role in plant immunity, its molecular function is not fully understood. We found that RIN4 interacts with the exocyst subunit EXO70E2. Transiently expressed RIN4 can recruits EXO70E2 vesicles to the plasma membrane, and promote the transport of the vesicles to the extracellular matrix. RIN4 also can decrease the protein level of EXO70E2. Base on the fact that EXO70 proteins positively mediates plant immunity, the function of RIN4 is to promote the extracellular export of defense related vesicles. Pathogens will secret effectors to modify or cleavage it to interfere this exocytosis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Nicotiana/genética , Proteínas de Transporte Vesicular/genética
12.
Planta ; 253(1): 11, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389186

RESUMO

KEY MESSAGE: We reviewed recent advances related to RIN4, including its involvement in the immune process through posttranslational modifications, PM H+-ATPase activity regulation, interaction with EXO70 and identification of RIN4-associated NLR proteins. RPM1-interacting protein 4 (RIN4) is a conserved plant immunity regulator that has been extensively studied and can be modified by pathogenic effector proteins. RIN4 plays an important role in both PTI and ETI. In this article, we review the functions of the two conserved NOI domains of RIN4, the C-terminal cysteine residues required for membrane localization and the sites targeted and modified by effector proteins during plant immunity. In addition, we discuss the effect of RIN4 on the stomatal virulence of pathogens via the regulation of PM H+-ATPase activity, which is involved in the immune process through interactions with the exocyst subunit EXO70, and progress in the identification of RIN4-related R proteins in multiple species. This review provides new insights enhancing the current understanding of the immune function of RIN4.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peptídeos e Proteínas de Sinalização Intracelular , Imunidade Vegetal , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Imunidade Vegetal/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia
13.
Biol Res ; 54(1): 5, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593425

RESUMO

BACKGROUND: Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS: The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.


Assuntos
Concussão Encefálica/metabolismo , Exocitose , Proteínas de Transporte Vesicular/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299214

RESUMO

Localized delivery of plasma-membrane and cell-wall components is a crucial process for plant cell growth. One of the regulators of secretory-vesicle targeting is the exocyst tethering complex. The exocyst mediates first interaction between transport vesicles and the target membrane before their fusion is performed by SNARE proteins. In land plants, genes encoding the EXO70 exocyst subunit underwent an extreme proliferation with 23 paralogs present in the Arabidopsis (Arabidopsis thaliana) genome. These paralogs often acquired specialized functions during evolution. Here, we analyzed functional divergence of selected EXO70 paralogs in Arabidopsis. Performing a systematic cross-complementation analysis of exo70a1 and exo70b1 mutants, we found that EXO70A1 was functionally substituted only by its closest paralog, EXO70A2. In contrast, none of the EXO70 isoforms tested were able to substitute EXO70B1, including its closest relative, EXO70B2, pointing to a unique function of this isoform. The presented results document a high degree of functional specialization within the EXO70 gene family in land plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Exocitose , Regulação da Expressão Gênica de Plantas , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/genética
15.
Curr Genet ; 66(1): 85-95, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31183512

RESUMO

Botrytis cinerea is one of the most important saprophytic plant pathogenic fungi. The exocyst complex and exocytosis was demonstrated to be involved in fungal development and plant infection. Here, we investigated the function of an exocyst subunit gene Bcexo70 in B. cinerea. The results show that knockout of the Bcexo70 gene significantly reduced the fungal growth and hindered the production of conidia and sclerotia. The Bcexo70 deletion strains showed a severe decrease in virulence toward tomato leaves and reduced secretion of cell wall-degrading enzyme. Confocal and electronic microscopic observation showed that the vesicles in the Bcexo70 mutants were enlarged and scattered in the cytoplasm compared to the regular distribution in the hyphal tip in wild-type strain. This study showed that the exocyst gene Bcexo70 is crucial for fungal growth, conidiation and pathogenicity in B. cinerea.


Assuntos
Botrytis/fisiologia , Exocitose , Proteínas de Transporte Vesicular/metabolismo , Biomarcadores , Botrytis/ultraestrutura , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Técnicas de Silenciamento de Genes , Recombinação Homóloga , Protoplastos/metabolismo , Deleção de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Proteínas de Transporte Vesicular/genética
16.
New Phytol ; 227(2): 529-544, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32119118

RESUMO

The plasma membrane (PM)-localized receptor kinase FLAGELLIN SENSING 2 (FLS2) recognizes bacterial flagellin or its immunogenic epitope flg22, and initiates microbe-associated molecular pattern-triggered immunity, which inhibits infection by bacterial pathogens. The localization, abundance and activity of FLS2 are under dynamic control. Here, we demonstrate that Arabidopsis thaliana EXO70B1, a subunit of the exocyst complex, plays a critical role in FLS2 signaling that is independent of the truncated Toll/interleukin-1 receptor-nucleotide binding sequence protein TIR-NBS2 (TN2). In the exo70B1-3 mutant, the abundance of FLS2 protein at the PM is diminished, consistent with the impaired flg22 response of this mutant. EXO70B1-GFP plants showed increased FLS2 accumulation at the PM and therefore enhanced FLS2 signaling. The EXO70B1-mediated trafficking of FLS2 to the PM is partially independent of the PENETRATION 1 (PEN1)-containing secretory pathway. In addition, EXO70B1 interacts with EXO70B2, a close homolog of EXO70B1, and both proteins associate with FLS2 and contribute to the accumulation of FLS2 at the PM. Taken together, our data suggest that the exocyst complex subunits EXO70B1 and EXO70B2 regulate the trafficking of FLS2 to the PM, which represents a new layer of regulation of FLS2 function in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular , Flagelina , Homeostase , Proteínas Quinases/genética , Proteínas de Transporte Vesicular
17.
J Exp Bot ; 71(1): 49-62, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647563

RESUMO

Localized delivery of plasma membrane and cell wall components is an essential process in all plant cells. The vesicle-tethering complex, the exocyst, an ancient eukaryotic hetero-octameric protein cellular module, assists in targeted delivery of exocytosis vesicles to specific plasma membrane domains. Analyses of Arabidopsis and later other land plant genomes led to the surprising prediction of multiple putative EXO70 exocyst subunit paralogues. All land plant EXO70 exocyst subunits (including those of Bryophytes) form three distinct subfamilies-EXO70.1, EXO70.2, and EXO70.3. Interestingly, while the basal well-conserved EXO70.1 subfamily consists of multiexon genes, the remaining two subfamilies contain mostly single exon genes. Published analyses as well as public transcriptomic and proteomic data clearly indicate that most cell types in plants express and also use several different EXO70 isoforms. Here we sum up recent advances in the characterization of the members of the family of plant EXO70 exocyst subunits and present evidence that members of the EXO70.2 subfamily are often recruited to non-canonical functions in plant membrane trafficking pathways. Engagement of the most evolutionarily dynamic EXO70.2 subfamily of EXO70s in biotic interactions and defence correlates well with massive proliferation and conservation of new protein variants in this subfamily.


Assuntos
Embriófitas/genética , Evolução Molecular , Família Multigênica/genética , Proteínas de Transporte Vesicular/genética , Citoplasma/metabolismo , Embriófitas/metabolismo , Genes de Plantas/genética , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Proteínas de Transporte Vesicular/metabolismo
18.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093420

RESUMO

Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.


Assuntos
Arabidopsis , Erigeron/genética , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ubiquitina-Proteína Ligases , Arabidopsis/enzimologia , Arabidopsis/genética , Erigeron/enzimologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
19.
Proc Natl Acad Sci U S A ; 113(1): E41-50, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26607451

RESUMO

The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells and enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. This study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endossomos/metabolismo , Exocitose , Limoninas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Sequência Conservada , Evolução Molecular , Humanos , Estrutura Secundária de Proteína
20.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382643

RESUMO

Plasma membrane (PM) lipid composition and domain organization are modulated by polarized exocytosis. Conversely, targeting of secretory vesicles at specific domains in the PM is carried out by exocyst complexes, which contain EXO70 subunits that play a significant role in the final recognition of the target membrane. As we have shown previously, a mature Arabidopsis trichome contains a basal domain with a thin cell wall and an apical domain with a thick secondary cell wall, which is developed in an EXO70H4-dependent manner. These domains are separated by a cell wall structure named the Ortmannian ring. Using phospholipid markers, we demonstrate that there are two distinct PM domains corresponding to these cell wall domains. The apical domain is enriched in phosphatidic acid (PA) and phosphatidylserine, with an undetectable amount of phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the basal domain is PIP2-rich. While the apical domain recruits EXO70H4, the basal domain recruits EXO70A1, which corresponds to the lipid-binding capacities of these two paralogs. Loss of EXO70H4 results in a loss of the Ortmannian ring border and decreased apical PA accumulation, which causes the PA and PIP2 domains to merge together. Using transmission electron microscopy, we describe these accumulations as a unique anatomical feature of the apical cell wall-radially distributed rod-shaped membranous pockets, where both EXO70H4 and lipid markers are immobilized.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Lipídeos de Membrana/genética , Proteínas de Transporte Vesicular/genética , Arabidopsis/química , Proteínas de Arabidopsis/química , Membrana Celular/química , Membrana Celular/genética , Exocitose/genética , Lipídeos de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/genética , Tricomas/química , Tricomas/genética , Proteínas de Transporte Vesicular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA