Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(1): H12-H27, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727253

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Reprodutibilidade dos Testes , Fatores de Tempo , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Isoproterenol/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Microeletrodos , Linhagem Celular , Cardiotoxicidade
2.
Stress ; 20(1): 10-18, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27788633

RESUMO

While animal housing conditions are highly controlled and standardized between different laboratories, there are still many subtle differences that unavoidably influence the host organisms and, consequently, interlaboratory reproducibility. Here, we investigated the physiological and immunological consequences between two light/dark cycle (LDC) lengths (14-h/10-h vs. 12-h/12-h LDC) and two commonly used forms of drinking water (acidified drinking water (AW) versus normal tap water (NW)) in single-housed (SH) mice. Our results indicate that SH mice bred under a 12-h/12-h LDC and NW at the supplier's facility showed increased basal morning plasma corticosterone (CORT) levels even 4 weeks after arrival at our animal facility employing a 14-h/10-h LDC and AW. This effect was even more pronounced two weeks after arrival and had abated after 8 weeks. In agreement, increased plasma adrenocorticotropic hormone (ACTH), adrenal in vitro ACTH sensitivity, as well as relative and absolute adrenal weight normalized during this 8-week exposure to the novel and unfamiliar 14-h/10-h LDC and AW. Employment of a 12-h/12-h LDC in our facility completely abrogated the CORT-elevating effects of the 14-h/10-h LDC, despite these animals drinking AW. When both the water and light conditions were matched to those at the supplier's facility, we observed a further reduction in adrenal weight, increased thymus weight, and decreased pro-inflammatory cytokine secretion of isolated and anti-CD3/28-stimulated mesenteric lymph node cells. In summary, our results indicate that prolonged alteration of both the light phase and drinking water represent severe and long-lasting stressors for laboratory rodents. These findings are of general interest for all scientists obtaining their experimental animals from conventional suppliers.


Assuntos
Hormônio Adrenocorticotrópico/sangue , Corticosterona/sangue , Abrigo para Animais , Fotoperíodo , Água , Glândulas Suprarrenais/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Iluminação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Reprodutibilidade dos Testes
3.
Nephron ; : 1-11, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38934165

RESUMO

INTRODUCTION: The first version of Animal Research: Reporting of in vivo Experiments (ARRIVE 1.0) guidelines was introduced to improve reporting of animal research but did not lead to major improvements in this respect. This applied also to animal studies on peritoneal dialysis (PD). Here, we examined the performance of the revised version of these guidelines (ARRIVE 2.0). METHODS: Eighty-nine relevant articles published in 2018-2020 (ARRIVE 1.0 period) and 97 published in 2021-2023 (ARRIVE 2.0 period) were identified in PubMed® and analyzed for completeness and transparency of reporting. RESULTS: In both periods, most studies were carried out in Asia, on rodents, and concerned the peritoneal pathophysiology. During ARRIVE 2.0, more studies were published in higher impact factor journals with the focus on pharmacology and immunology. Compared to ARRIVE 1.0, general aspects of study design and reporting improved during ARRIVE 2.0 period in studies generated in Europe and USA but did not change significantly in Asia. Detailed analysis showed no global improvement in completeness of reporting key information included in the ARRIVE 2.0 Essential 10 checklist. Articles from both periods were deficient in sample size calculations, use of blinding, recording adverse events and drop-outs, and specification of appropriate statistical methods. The level of reporting during ARRIVE 2.0 did not correspond to the journal impact factor and the presence of recommendations for the use of ARRIVE 2.0 in their instructions to authors. CONCLUSION: So far, ARRIVE 2.0 has not produced significant improvements in the reporting of animal studies in PD.

4.
Biol Rev Camb Philos Soc ; 99(1): 253-264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817305

RESUMO

Reproducibility in animal research is impacted by the environment, by husbandry practices in the laboratory and by the animals' provenance. These factors, however, are often not adequately considered by researchers. A disconnect between researchers and animal care staff can result in inappropriate housing and husbandry decisions for scientific studies with those animals. This is especially the case for the research in neuro-behaviour, epigenetics, and the impact of climate change, as heritable phenotypic, behavioural or physiological changes are known to result from the animals' environmental housing, husbandry, provenance and prior experience. This can lead to greater variation (even major differences) in data outcomes among studies, driving scientific uncertainties. Herein, we illustrate some of the endpoints measured in fish studies known to be intrinsically linked to the environment and husbandry conditions and assess the significance of housing and husbandry practice decisions for research adopting these endpoints for different fish species. We highlight the different priorities and challenges faced by researchers and animal care staff and how harmonising their activities and building greater understanding of how husbandry practices affect the fish will improve reproducibility in research outcomes. We furthermore illustrate how improving engagement between stakeholders, including regulatory bodies, can better underpin fish husbandry decisions and where researchers could help to drive best husbandry practices through their own research with fish models.


Assuntos
Criação de Animais Domésticos , Peixes , Humanos , Animais , Reprodutibilidade dos Testes , Abrigo para Animais , Mudança Climática
5.
Pharmacol Res Perspect ; 10(2): e00900, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191209

RESUMO

The gastrointestinal (GI) hormone motilin helps control human stomach movements during hunger and promotes hunger. Although widely present among mammals, it is generally accepted that in rodents the genes for motilin and/or its receptor have undergone pseudonymization, so exogenous motilin cannot function. However, several publications describe functions of low concentrations of motilin, usually within the GI tract and CNS of mice, rats, and guinea pigs. These animals were from institute-held stocks, simply described with stock names (e.g., "Sprague-Dawley") or were inbred strains. It is speculated that variation in source/type of animal introduces genetic variations to promote motilin-sensitive pathways. Perhaps, in some populations, motilin receptors exist, or a different functionally-active receptor has a good affinity for motilin (indicating evolutionary pressures to retain motilin functions). The ghrelin receptor has the closest sequence homology, yet in non-rodents the receptors have a poor affinity for each other's cognate ligand. In rodents, ghrelin may substitute for certain GI functions of motilin, but no good evidence suggests rodent ghrelin receptors are highly responsive to motilin. It remains unknown if motilin has functional relationships with additional bioactive molecules formed from the ghrelin and motilin genes, or if a 5-TM motilin receptor has influence in rodents (e.g., to dimerize with GPCRs and create different pharmacological profiles). Is the absence/presence of responses to motilin in rodents' characteristic for systems undergoing gene pseudonymization? What are the consequences of rodent supplier-dependent variations in motilin sensitivity (or other ligands for receptors undergoing pseudonymization) on gross physiological functions? These are important questions for understanding animal variation.


Assuntos
Trato Gastrointestinal/fisiologia , Motilina/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Variação Genética , Grelina/metabolismo , Cobaias , Humanos , Camundongos , Ratos , Receptores de Grelina/metabolismo , Roedores , Especificidade da Espécie
6.
Ultrasound Med Biol ; 48(9): 1745-1761, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760602

RESUMO

Ultrasound accelerates healing in fractured bone; however, the mechanisms responsible are poorly understood. Experimental setups and ultrasound exposures vary or are not adequately characterized across studies, resulting in inter-study variation and difficulty in concluding biological effects. This study investigated experimental variability introduced through the cell culture platform used. Continuous wave ultrasound (45 kHz; 10, 25 or 75 mW/cm2, 5 min/d) was applied, using a Duoson device, to Saos-2 cells seeded in multiwell plates or Petri dishes. Pressure field and vibration quantification and finite-element modelling suggested formation of complex interference patterns, resulting in localized displacement and velocity gradients, more pronounced in multiwell plates. Cell experiments revealed lower metabolic activities in both culture platforms at higher ultrasound intensities and absence of mineralization in certain regions of multiwell plates but not in Petri dishes. Thus, the same transducer produced variable results in different cell culture platforms. Analysis on Petri dishes further revealed that higher intensities reduced vinculin expression and distorted cell morphology, while causing mitochondrial and endoplasmic reticulum damage and accumulation of cells in sub-G1 phase, leading to cell death. More defined experimental setups and reproducible ultrasound exposure systems are required to study the real effect of ultrasound on cells for development of effective ultrasound-based therapies not just limited to bone repair and regeneration.


Assuntos
Técnicas de Cultura de Células , Terapia por Ultrassom , Transdutores , Terapia por Ultrassom/métodos , Ultrassonografia
7.
Front Behav Neurosci ; 15: 772734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803627

RESUMO

The use of mouse models has revolutionized the field of Down syndrome (DS), increasing our knowledge about neuropathology and helping to propose new therapies for cognitive impairment. However, concerns about the reproducibility of results in mice and their translatability to humans have become a major issue, and controlling for moderators of behavior is essential. Social and environmental factors, the experience of the researcher, and the sex and strain of the animals can all have effects on behavior, and their impact on DS mouse models has not been explored. Here we analyzed the influence of a number of social and environmental factors, usually not taken into consideration, on the behavior of male and female wild-type and trisomic mice (the Ts65Dn model) in one of the most used tests for proving drug effects on memory, the novel object recognition (NOR) test. Using principal component analysis and correlation matrices, we show that the ratio of trisomic mice in the cage, the experience of the experimenter, and the timing of the test have a differential impact on male and female and on wild-type and trisomic behavior. We conclude that although the NOR test is quite robust and less susceptible to environmental influences than expected, to obtain useful results, the phenotype expression must be contrasted against the influences of social and environmental factors.

8.
Perit Dial Int ; 40(4): 394-404, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32063215

RESUMO

The concerns about reproducibility and validity of animal studies are partly related to poor experimental design and reporting. Here, we undertook a scoping review of the literature to determine the extent and quality of reporting of animal studies on peritoneal dialysis (PD). Online databases were searched to identify 567 relevant original articles published between 1979 and 2018. These were analyzed with respect to bibliographic parameters and general aspects of animal experimentation. A subgroup of 120 studies was analyzed in detail in terms of the impact on the reporting quality of the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines for animal studies. The number of animal studies on PD increased continuously over the years with a thematic shift toward long-term preservation of the peritoneum as a dialyzing organ. There were significant deficiencies in research design with the lack of sample size estimation, randomization, and blinding being the commonest shortcomings. The description of animal numbers, housing conditions, use of medication, and statistical analysis was incomplete. The introduction in 2010 of the ARRIVE guidelines produced very little improvement in the completeness of reporting regardless of journal impact factor. The animal studies on PD suffer from deficits in experimental protocols and transparent reporting. These drawbacks need to be corrected to ensure high-quality and much-needed animal research in PD.


Assuntos
Experimentação Animal , Diálise Peritoneal , Projetos de Pesquisa , Animais , Humanos , Reprodutibilidade dos Testes
9.
J Bone Miner Res ; 33(10): 1721-1728, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30133922

RESUMO

Cell-based therapies hold much promise for musculoskeletal medicine; however, this rapidly growing field faces a number of challenges. Few of these therapies have proven clinical benefit, and an insufficient regulatory environment has allowed for widespread clinical implementation without sufficient evidence of efficacy. The technical and biological complexity of cell-based therapies has contributed to difficulties with reproducibility and mechanistic clarity. In order to aid in addressing these challenges, we aim to clarify the key issues in the preclinical cell therapy field, and to provide a conceptual framework for advancing the state of the science. Broadly, these suggestions relate to: (i) delineating cell-therapy types and moving away from "catch-all" terms such as "stem cell" therapies; (ii) clarifying descriptions of cells and their processing; and (iii) increasing the standard of in vivo evaluation of cell-based therapy experiments to determining cell fates. Further, we provide an overview of methods for experimental evaluation, data sharing, and professional society participation that would be instrumental in advancing this field. © 2018 American Society for Bone and Mineral Research.


Assuntos
Pesquisa Biomédica , Osso e Ossos/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Regeneração/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA