Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Macromol Rapid Commun ; : e2400249, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818529

RESUMO

This review aims to present the different approaches to lessen the environmental impact of the extrusion-based additive manufacturing (MEX) process of thermoplastic-based resins and protect the ecosystem. The benefits and drawbacks of each alternative, including the use of biomaterials or recycled materials as feedstock, energy efficiency, and polluting emissions reduction, have been examined. First, the technological option of using a pellet-fed printer was compared to a filament-fed printer. Then, common biopolymers utilized in MEX applications are discussed, along with methods for improving the mechanical properties of associated printed products. The introduction of natural fillers in thermoplastic resins and the use of biocomposite filaments have been proposed to improve the specific performance of printed items, highlighting the numerous challenges related to their extrusion. Various polymers and fillers derived from recycling are presented as feeding raw materials for printers to reduce waste accumulation, showing the inferior qualities of the resulting goods when compared to printed products made from virgin materials. Finally, the energy consumption and emissions released into the atmosphere during the printing process are discussed, with the potential for both aspects to be controlled through material selection and operating conditions.

2.
J Food Sci Technol ; 60(2): 453-463, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36712201

RESUMO

A new methodology was developed to print pizza dough with a gluten free flour blend or commercial gluten whole wheat flour using extrusion-based 3-D printing technology. Their physical properties were compared to commercially available pizza dough and crust. The optimized nozzle size, print speed, ingredient flow speed, and line thickness for the 3-D printing of pizza dough were: 0.04 cm, 800 cm/minutes, 1.8, and 0.34 cm, respectively. The printed gluten-free pizza dough required 120 min of fermentation to obtain a comparable color and textural profile (P < 0.05) to that of the gluten whole wheat flour dough fermented for 60 min. The 3-D printed gluten free, whole-wheat pizza and commercially available wheat flour dough and standard crusts demonstrated identical Δ E ab ∗ values of 0.14 and 0.13, respectively with brownness index (BI) values of 1.47 and 1.62, respectively. Textural profile analysis (TPA) of 3-D printed gluten free and whole wheat pizza dough, crust and the commercial standard wheat flour pizza dough and crust demonstrated significant (P < 0.05) correlations in terms of hardness, fracturability, adhesiveness, springiness, cohesiveness, chewiness, and resilience. An optimized method was developed to prepare gluten-free pizza dough and crust with similar functional properties to that of gluten whole wheat flour dough and crust.

3.
Biotechnol Bioeng ; 119(1): 118-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617587

RESUMO

Three dimensional printable formulation of self-standing and vascular-supportive structures using multi-materials suitable for organ engineering is of great importance and highly challengeable, but, it could advance the 3D printing scenario from printable shape to functional unit of human body. In this study, the authors report a 3D printable formulation of such self-standing and vascular-supportive structures using an in-house formulated multi-material combination of albumen/alginate/gelatin-based hydrogel. The rheological properties and relaxation behavior of hydrogels were analyzed before the printing process. The suitability of the hydrogel in 3D printing of various customizable and self-standing structures, including a human ear model, was examined by extrusion-based 3D printing. The structural, mechanical, and physicochemical properties of the printed scaffolds were studied systematically. Results supported the 3D printability of the formulated hydrogel with self-standing structures, which are customizable to a specific need. In vitro cell experiment showed that the formulated hydrogel has excellent biocompatibility and vascular supportive behavior with the extent of endothelial sprout formation when tested with human umbilical vein endothelial cells. In conclusion, the present study demonstrated the suitability of the extrusion-based 3D printing technique for manufacturing complex shapes and structures using multi-materials with high fidelity, which have great potential in organ engineering.


Assuntos
Endotélio Vascular , Hidrogéis/química , Neovascularização Fisiológica , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Células Cultivadas , Orelha/irrigação sanguínea , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Alicerces Teciduais/química
4.
Crit Rev Food Sci Nutr ; : 1-29, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36343331

RESUMO

Extrusion is a versatile process capable of producing a variety of new and novel foods and ingredients, thus increasing manufacturing opportunities. Further, it could provide nutritious, safe, sustainable, and affordable foods, especially directed at individualized consumer needs. In addition to past research efforts, more investigations should be conducted in order to refine, redesign, or develop new extrusion processing technologies. The present review highlights the current advances made in new and novel food product development by considering the extrusion process, the influencing parameters, and product characteristics and properties; the most promising extrusion processes that can be used in novel food product and ingredient development, such as extrusion cooking, hot-melt extrusion, reactive extrusion, and extrusion-based 3D printing; the possibilities of using various raw materials in relation to process and product development; and the needs for product development modeling along with extrusion process design and modeling. In correlation with extruded product development, topics that merit further investigation may include structure formation, plant and animal biopolymers functionalization, biopolymer reactions, process simulation, modeling and control, engineering and mechanical aspects of extruders, analysis of pre-processing treatments, as well as prototyping, risk analysis, safety, sensory and consumer acceptance.

5.
ACS Appl Mater Interfaces ; 16(9): 11740-11748, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394674

RESUMO

With the rapid development of human-machine interactions and artificial intelligence, the demand for wearable electronic devices is increasing uncontrollably all over the world; however, an unsustainable power supply for such sensors continues to restrict their applications. In the present work, piezoelectric barium titanate (BaTiO3) ceramic powder with excellent properties was prepared from milled precursors through a solid-state reaction. To fabricate a flexible device, the as-prepared BaTiO3 powder was mixed with polydimethylsiloxane (PDMS) polymer. The BaTiO3/PDMS ink with excellent rheological properties was extruded smoothly by direct ink writing technology (DIW). BaTiO3 particles were aligned due to the shear stress effect during the printing process. Subsequently, the as-printed composite was assembled into a sandwich-type device for effective energy harvesting. It was observed that the maximum output voltage and current of this device reached 68 V and 720 nA, respectively, for a BaTiO3 content of 6 vol %. Therefore, the material extrusion-based three-dimensional (3D) printing technique can be used to prepare flexible piezoelectric composites for efficient energy harvesting.

6.
Acta Biomater ; 162: 182-198, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972809

RESUMO

The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges have been overcome. Herein, we present porous FeMn-akermanite composite scaffolds fabricated by extrusion-based 3D printing to address the unmet clinical needs associated with Fe-based biomaterials for bone regeneration, including low biodegradation rate, MRI-incompatibility, mechanical properties, and limited bioactivity. In this research, we developed inks containing Fe, 35 wt% Mn, and 20 or 30 vol% akermanite powder mixtures. 3D printing was optimized together with the debinding and sintering steps to obtain scaffolds with interconnected porosity of 69%. The Fe-matrix in the composites contained the γ-FeMn phase as well as nesosilicate phases. The former made the composites paramagnetic and, thus, MRI-friendly. The in vitro biodegradation rates of the composites with 20 and 30 vol% akermanite were respectively 0.24 and 0.27 mm/y, falling within the ideal range of biodegradation rates for bone substitution. The yield strengths of the porous composites stayed within the range of the values of the trabecular bone, despite in vitro biodegradation for 28 d. All the composite scaffolds favored the adhesion, proliferation, and osteogenic differentiation of preosteoblasts, as revealed by Runx2 assay. Moreover, osteopontin was detected in the extracellular matrix of cells on the scaffolds. Altogether, these results demonstrate the remarkable potential of these composites in fulfilling the requirements of porous biodegradable bone substitutes, motivating future in vivo research. STATEMENT OF SIGNIFICANCE: We developed FeMn-akermanite composite scaffolds by taking advantage of the multi-material capacity of extrusion-based 3D printing. Our results demonstrated that the FeMn-akermanite scaffolds showed an exceptional performance in fulfilling all the requirements for bone substitution in vitro, i.e., a sufficient biodegradation rate, having mechanical properties in the range of trabecular bone even after 4 weeks biodegradation, paramagnetic, cytocompatible and most importantly osteogenic. Our results encourage further research on Fe-based bone implants in in vivo.


Assuntos
Substitutos Ósseos , Substitutos Ósseos/farmacologia , Porosidade , Osteogênese , Impressão Tridimensional , Alicerces Teciduais/química
7.
Biofabrication ; 15(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36645921

RESUMO

Additively manufactured hollow-strut bioceramic scaffolds present a promising strategy towards enhanced performance in patient-tailored bone tissue engineering. The channels in such scaffolds offer pathways for nutrient and cell transport and facilitate effective osseointegration and vascularization. In this study, we report an approach for the slurry based additive manufacturing of modified diopside bioceramics that enables the production of hollow-strut scaffolds with diverse cross-sectional forms, distinguished by different configurations of channel and strut geometries. The prepared scaffolds exhibit levels of porosity and mechanical strength that are well suited for osteoporotic bone repair. Mechanical characterization in orthogonal orientations revealed that a square outer cross-section for hollow struts in woodpile scaffolds gives rise to levels of compressive strength that are higher than those of conventional solid cylindrical strut scaffolds despite a significantly lower density. Finite element analysis confirms that this improved strength arises from lower stress concentration in such geometries. It was shown that hollow struts in bioceramic scaffolds dramatically increase cell attachment and proliferation, potentially promoting new bone tissue formation within the scaffold channel. This work provides an easily controlled method for the extrusion-based 3D printing of hollow strut scaffolds. We show here how the production of hollow struts with controllable geometry can serve to enhance both the functional and mechanical performance of porous structures, with particular relevance for bone tissue engineering scaffolds.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Estudos Transversais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Osso e Ossos , Porosidade , Impressão Tridimensional
8.
3D Print Addit Manuf ; 10(4): 816-827, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609589

RESUMO

Direct ink writing (DIW) belongs to extrusion-based three-dimensional (3D) printing techniques. The success of DIW process depends on well-printable ink and optimized process parameters. After ink preparation, DIW process parameters considerably affect the parts' dimensional accuracy, and process parameters optimization for dimensional accuracy of printed layers is necessary for quality control of parts in DIW. In this study, DIW process parameters were identified and divided into two categories as the parameters for printing a line and the parameter from lines to a layer. Then, a two-step method was proposed for optimizing process parameters. Step 1 was to optimize process parameters for printing a line. In Step 1, continuity and uniformity of extruded filaments and printed rectangular objects were observed in screening experiments to determine printability windows for each process parameter. Then, interaction effect tests were conducted and degree of freedom for experiments was calculated followed by orthogonal array selection for the Taguchi design. Next, main experiments of line printing based on the Taguchi method were conducted. Signal-to-noise ratio calculations and analysis of variance were performed to find the optimal combination and evaluate the significance, respectively. Step 2 was to optimize the parameter from lines to a layer. In Step 2, the average width of the printed line under optimal condition was first measured. Then, single-factor tests of rectangular object printing were conducted to find the optimal parameter from lines to a layer. After these two steps, confirmation results were conducted to verify the reliability of the proposed method and the method robustness on other shapes and other materials; parameter adaptability in 3D parts printing from printed layers' analyses for the proposed method; and parameter adaptability in constructs fabricated as 100% infill or with porosities.

9.
Polymers (Basel) ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242864

RESUMO

Polymers have a reputation for several advantageous characteristics like chemical resistance, weight reduction, and simple form-giving processes. The rise of additive manufacturing technologies such as Fused Filament Fabrication (FFF) has introduced an even more versatile production process that supported new product design and material concepts. This led to new investigations and innovations driven by the individualization of customized products. The other side of the coin contains an increasing resource and energy consumption satisfying the growing demand for polymer products. This turns into a magnitude of waste accumulation and increased resource consumption. Therefore, appropriate product and material design, taking into account end-of-life scenarios, is essential to limit or even close the loop of economically driven product systems. In this paper, a comparison of virgin and recycled biodegradable (polylactic acid (PLA)) and petroleum-based (polypropylene (PP) & support) filaments for extrusion-based Additive Manufacturing is presented. For the first time, the thermo-mechanical recycling setup contained a service-life simulation, shredding, and extrusion. Specimens and complex geometries with support materials were manufactured with both, virgin and recycled materials. An empirical assessment was executed through mechanical (ISO 527), rheological (ISO 1133), morphological, and dimensional testing. Furthermore, the surface properties of the PLA and PP printed parts were analyzed. In summary, PP parts and parts from its support structure showed, in consideration of all parameters, suitable recyclability with a marginal parameter variance in comparison to the virgin material. The PLA components showed an acceptable decline in the mechanical values but through thermo-mechanical degradation processes, rheological and dimensional properties of the filament dropped decently. This results in significantly identifiable artifacts of the product optics, based on an increase in surface roughness.

10.
Materials (Basel) ; 16(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903203

RESUMO

The three-dimensional (3D) printing of hydrogel is an issue of interest in various applications to build optimized 3D structured devices beyond 2D-shaped conventional structures such as film or mesh. The materials design for the hydrogel, as well as the resulting rheological properties, largely affect its applicability in extrusion-based 3D printing. Here, we prepared a new poly(acrylic acid)-based self-healing hydrogel by controlling the hydrogel design factors based on a defined material design window in terms of rheological properties for application in extrusion-based 3D printing. The hydrogel is designed with a poly(acrylic acid) main chain with a 1.0 mol% covalent crosslinker and 2.0 mol% dynamic crosslinker, and is successfully prepared based on radical polymerization utilizing ammonium persulfate as a thermal initiator. With the prepared poly(acrylic acid)-based hydrogel, self-healing characteristics, rheological characteristics, and 3D printing applicability are deeply investigated. The hydrogel spontaneously heals mechanical damage within 30 min and exhibits appropriate rheological characteristics, including G'~1075 Pa and tan δ~0.12, for extrusion-based 3D printing. Upon application in 3D printing, various 3D structures of hydrogel were successfully fabricated without showing structural deformation during the 3D printing process. Furthermore, the 3D-printed hydrogel structures exhibited excellent dimensional accuracy of the printed shape compared to the designed 3D structure.

11.
Biomater Adv ; 149: 213414, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031611

RESUMO

The formulation of hydrogels that meet the necessary flow characteristics for their extrusion-based 3D printing while providing good printability, resolution, accuracy and stability, requires long development processes. This work presents the technological development of a hydrogel-based ink of Laponite and alginate and evaluates its printing capacity. As a novelty, this article reports a standardizable protocol to quantitatively define the best printing parameters for the development of novel inks, providing new printability evaluation parameters such as the Printing Accuracy Escalation Index. As a result, this research develops a printable Laponite-Alginate hydrogel that presents printability characteristics. This ink is employed for the reproducible manufacture of 3D printed scaffolds with versatile and complex straight or curved printing patterns for a better adaptation to different final applications. Obtained constructs prove to be stable over time thanks to the optimization of a curing process. In addition, the study of the swelling and degradation behavior of the Laponite and alginate 3D printed scaffolds in different culture media allows the prediction of their behavior in future in vitro or in vivo developments. Finally, this study demonstrates the absence of cytotoxicity of the printed formulations, hence, setting the stage for their use in the field of biomedicine.


Assuntos
Hidrogéis , Tinta , Alginatos , Alicerces Teciduais , Impressão Tridimensional
12.
Polymers (Basel) ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177367

RESUMO

Material extrusion-based polymer 3D printing, one of the most commonly used additive manufacturing processes for thermoplastics and composites, has drawn extensive attention due to its capability and cost effectiveness. However, the low surface finish quality of the printed parts remains a drawback due to the nature of stacking successive layers along one direction and the nature of rastering of the extruded tracks of material. In this work, an in-process thermal radiation-assisted, surface reflow method is demonstrated that significantly improves the surface finish of the sidewalls of printed parts. It is observed that the surface finish of the printed part is drastically improved for both flat and curved surfaces. The effect of surface reflow on roughness reduction was characterized using optical profilometry and scanning electron microscopy (SEM), while the local heated spot temperature was quantified using a thermal camera.

13.
Comput Biol Med ; 166: 107536, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37801921

RESUMO

As a promising treatment for third-degree burns, grafting with bioengineering skin substitutes shows a capability to overcome the deficiency of donor skin. Similar mechanical properties with human skin are required for employed skin substitutes to avoid secondary damage to patients. Given the representativeness of orthotropy in mechanical properties, there is a need for developing orthotropic skin substitutes. This paper presents computational investigation as well as structural design for the fabrication of orthotropic skin substitutes. A finite element method (FEM) based mechanics simulation model for analyzing the stress field in the skin substitute was developed, by which the stress distribution in mimetic structures of the epidermis and dermis can be acquired. Moreover, the equation of Young's modulus was deduced based on the simulation result, which expressed the mechanical property of designed skin substitutes. Furthermore, several structures of skin substitutes were proposed and their calculated Young's modulus ranged from 21.87 kPa to 213.32 kPa, which was similar to the human skin. Ultimately, uniaxial tensile tests were performed for three types of 3D-printed orthotropic skin substitutes, which validates the feasibility to regulate Young's modulus by regulating the structure of fabricated skin substitutes.

14.
Eur J Pharm Biopharm ; 186: 30-42, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933810

RESUMO

With the growing interest in environmentally friendly and personalized medicines, new concept for combining three-dimensional printing (3DP) with natural-based biomaterials derived from agro-food wastes has emerged. This approach provides sustainable solutions for agricultural waste management and potential for developing of novel pharmaceutical products with tunable characteristics. This work demonstrated the feasibility of fabricating personalized theophylline films with four different structures (Full, Grid, Star, and Hilbert) using syringe extrusion 3DP and carboxymethyl cellulose (CMC) derived from durian rind wastes. Our findings suggested that all the CMC-based inks with shear thinning properties capable of being extruded smoothly through a small nozzle could potentially be used to fabricate the films with various complex printing patterns and high structural fidelity. The results also demonstrated that the film characteristics and release profiles could be easily modified by simply changing the slicing parameters (e.g., infill density and printing pattern). Amongst all formulations, Grid film, which was 3D-printed with 40 % infill and a grid pattern, demonstrated a highly porous structure with high total pore volume. The voids between printing layers in Grid film increased theophylline release (up to 90 % in 45 min) through improved wetting and water penetration. All findings in this study provide significant insight into how to modify film characteristics simply by digitally changing the printing pattern in slicer software without creating a new CAD model. This approach could help to simplify the 3DP process so that non-specialist users can easily implement it in community pharmacies or hospital on demand.


Assuntos
Bombacaceae , Carboximetilcelulose Sódica , Tinta , Teofilina , Impressão Tridimensional
15.
Pharmaceutics ; 14(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36297543

RESUMO

Extrusion-based 3D printing for thermoplastic polymers manifests potential for the fabrication of biocompatible and biodegradable scaffolds. However, the uncontrollable shape of printed filaments usually negatively impacts on the printing processes. Non-uniform temperature in the print head is a primary cause of inaccuracy in the diameter of filaments formed during the process of extruding thermoplastic polymers. Therefore, the temperature distribution inside the print head must be controlled accurately. This study developed a novel print head configuration with two groups of controllable heat sources for extrusion-based printing of thermoplastic polymers. Subsequently, a numerical thermal analysis based on the finite element method (FEM) was conducted to investigate the temperature field in the print head during the heating process. Moreover, a temperature control strategy is proposed under which the temperature distribution of the print head can be regulated. The temperature uniformity can be improved with the proposed temperature control strategy. Lastly, groups of printing trials were implemented, and the printed filaments showed excellent uniformity of diameter when temperature distribution uniformity was controlled in the print head.

16.
Biomater Adv ; 133: 112617, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35525731

RESUMO

Additively manufacturing of porous iron offers a unique opportunity to increase its biodegradation rate by taking advantage of arbitrarily complex porous structures. Nevertheless, achieving the required biodegradation profile remains challenging due to the natural passivation of iron that decrease the biodegradation rate. Moreover, the biocompatibility of iron is reported to be limited. Here, we address both challenges by applying poly(2-ethyl-2-oxazoline) coating to extrusion-based 3D printed porous iron. We characterized the specimens by performing in vitro biodegradation, electrochemical measurements, time-dependent mechanical tests, and in vitro cytocompatibility assays. The coated porous iron exhibited a biodegradation rate that was 2.6× higher than that of non-coated counterpart and maintained the bone-mimicking mechanical properties throughout biodegradation. Despite the formation of dense biodegradation products, the coating ensured a relatively stable biodegradation (i.e., 17% reduction in the degradation rate between days 14 and 28) as compared to that of non-coated specimens (i.e., 43% drop). Furthermore, the coating could be identified even after biodegradation, demonstrating the longevity of the coating. Finally, the coated specimens significantly increased the viability and supported the attachment and growth of preosteoblasts. Our results demonstrate the great potential of poly(2-ethyl-2-oxazoline) coating for addressing the multiple challenges associated with the clinical adoption of porous iron.


Assuntos
Ferro , Poliaminas , Ferro/farmacologia , Porosidade
17.
J Food Sci ; 87(6): 2692-2706, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35590483

RESUMO

Myofibrillar proteins (MPs) are important to the gel formation that occurs in frozen surimi. Importantly, their unique gel-forming ability indicates that surimi may be a promising material for use in 3D printing. The objective of the present study was to investigate the effects of collagen peptides on the cryoprotection of MPs during freeze-thaw (FT) cycles and the subsequent printability of surimi. The results showed that the collagen peptide had both protective and destructive actions during the tested FT cycles. The addition of 1.0% collagen peptide provided significant cryoprotection to the MPs. This addition effectively maintained the structural stability of MPs while also weakening FT effects on bound water and its mobility. We also assessed the rheological and 3D-printing characteristics of surimi with 1.0% collagen peptide. The rheological results indicated that the surimi with collagen peptides had better characteristics, including shear-thinning behavior, better recovery, and improved mechanical properties. Combined with the actual printing effect, materials with good shear-thinning behavior, high apparent viscosity, and high recovery might be more suitable for 3D printing. Moreover, the high G' contributed to good structural maintenance after printing. Collectively, these results indicated that collagen peptide may serve as a new, low-sugar cryoprotectant for use in surimi. Moreover, that its use would result in a healthier system that has increased stability, precision, and formability with applications in extrusion-based 3D printing. The results of this study provide theoretical reference for the development of new surimi materials with freezing stability and good 3D printing performance. PRACTICAL APPLICATION: This study confirmed the protective action of 1.0% collagen peptides for surimi and the contribution of it to well printing precision and structure maintenance for 3D printing, providing a firm foundation for the use of collagen peptide as a low-sugar cryoprotectant and developed a new type of surimi as a food material for 3D printing.


Assuntos
Crioprotetores , Impressão Tridimensional , Colágeno , Crioprotetores/química , Congelamento , Peptídeos , Açúcares
18.
Acta Biomater ; 148: 355-373, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35690326

RESUMO

Advanced additive manufacturing techniques have been recently used to tackle the two fundamental challenges of biodegradable Fe-based bone-substituting materials, namely low rate of biodegradation and insufficient bioactivity. While additively manufactured porous iron has been somewhat successful in addressing the first challenge, the limited bioactivity of these biomaterials hinder their progress towards clinical application. Herein, we used extrusion-based 3D printing for additive manufacturing of iron-matrix composites containing silicate-based bioceramic particles (akermanite), thereby addressing both of the abovementioned challenges. We developed inks that carried iron and 5, 10, 15, or 20 vol% of akermanite powder mixtures for the 3D printing process and optimized the debinding and sintering steps to produce geometrically-ordered iron-akermanite composites with an open porosity of 69-71%. The composite scaffolds preserved the designed geometry and the original α-Fe and akermanite phases. The in vitro biodegradation rates of the composites were improved as much as 2.6 times the biodegradation rate of geometrically identical pure iron. The yield strengths and elastic moduli of the scaffolds remained within the range of the mechanical properties of the cancellous bone, even after 28 days of biodegradation. The composite scaffolds (10-20 vol% akermanite) demonstrated improved MC3T3-E1 cell adhesion and higher levels of cell proliferation. The cellular secretion of collagen type-1 and the alkaline phosphatase activity on the composite scaffolds (10-20 vol% akermanite) were, respectively higher than and comparable to Ti6Al4V in osteogenic medium. Taken together, these results clearly show the potential of 3D printed porous iron-akermanite composites for further development as promising bone substitutes. STATEMENT OF SIGNIFICANCE: Porous iron matrix composites containing akermanite particles were produced by means of multi-material additive manufacturing to address the two fundamental challenges associated with biodegradable iron-based biomaterials, namely very low rate of biodegradation and insufficient bioactivity. Our porous iron-akermanite composites exhibited enhanced biodegradability and superior bioactivity compared to porous monolithic iron scaffolds. The murine bone cells proliferated on the composite scaffolds, and secreted the collagen type-1 matrix that stimulated bony-like mineralization. The results show the exceptional potential of the developed porous iron-based composite scaffolds for application as bone substitutes.


Assuntos
Substitutos Ósseos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Cerâmica , Colágeno , Ferro/química , Ferro/farmacologia , Camundongos , Porosidade , Impressão Tridimensional , Alicerces Teciduais/química
19.
Materials (Basel) ; 15(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269198

RESUMO

The mix proportioning of extrusion-based 3D-printed cementitious material should balance printability and hardened properties. This paper investigated the effects of three key mix proportion parameters of 3D-printed alkali-activated fly ash/slag (3D-AAFS) mortar, i.e., the sand to binder (s/b) ratio, fly ash/ground granulated blast-furnace slag (FA/GGBS) ratio, and silicate modulus (Ms) of the activator, on extrudability, buildability, interlayer strength, and drying shrinkage. The results showed that the loss of extrudability and the development of buildability were accelerated by increasing the s/b ratio, decreasing the FA/GGBS ratio, or using a lower Ms activator. A rise in the s/b ratio improved the interlayer strength and reduces the drying shrinkage. Although increasing the FA/GGBS mass ratio from 1 to 3 led to a reduction of 35% in the interlayer bond strength, it decreased the shrinkage strain by half. A larger silicate modulus was beneficial to the interlayer bond strength, but it made shrinkage more serious. Moreover, a simple centroid design method was developed for optimizing the mix proportion of 3D-AAFS mortar to simultaneously meet the requirements of printability and hardened properties.

20.
J Adv Res ; 40: 69-94, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100335

RESUMO

BACKGROUND: Tissue engineering (TE) is the main approach for stimulating the body's mechanisms to regenerate damaged or diseased organs. Bone and cartilage tissues due to high susceptibility to trauma, tumors, and age-related disease exposures are often need for reconstruction. Investigation on the development and applications of the novel biomaterials and methods in bone tissue engineering (BTE) is of great importance to meet emerging today's life requirements. AIM OF REVIEW: Biphasic calcium phosphates (BCPs) offer a chemically similar biomaterial to the natural bone, which can significantly promote cell proliferation and differentiation and accelerate bone formation and reconstruction. Recent advancements in the bone scaffold fabrication have led to employing additive manufacturing (AM) methods. Extrusion-based 3D printing, known also as robocasting method, is one of the extensively used AM techniques in BTE applications. This review discusses materials and methods utilized for BCP robocasting. KEY SCIENTIFIC CONCEPTS OF REVIEW: Recent advancements and existing challenges in the use of additives for bioink preparation are critically discussed. Commercialization and marketing approach, post-processing steps, clinical applications, in-vitro and in-vivo evaluations beside the biological responses are also reviewed. Finally, possible strategies and opportunities for the use of BCP toward injured bone regeneration are discussed.


Assuntos
Hidroxiapatitas , Alicerces Teciduais , Materiais Biocompatíveis , Regeneração Óssea , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA