Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37830236

RESUMO

Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.

2.
Stem Cells ; 39(7): 853-865, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594762

RESUMO

Glioblastoma (GBM) ranks among the most lethal of human malignancies with GBM stem cells (GSCs) that contribute to tumor growth and therapeutic resistance. Identification and isolation of GSCs continue to be a challenge, as definitive methods to purify these cells for study or targeting are lacking. Here, we leveraged orthogonal in vitro and in vivo phage display biopanning strategies to isolate a single peptide with GSC-specific binding properties. In silico analysis of this peptide led to the isolation of EYA1 (Eyes Absent 1), a tyrosine phosphatase and transcriptional coactivator. Validating the phage discovery methods, EYA1 was preferentially expressed in GSCs compared to differentiated tumor progeny. MYC is a central mediator of GSC maintenance but has been resistant to direct targeting strategies. Based on correlation and colocalization of EYA1 and MYC, we interrogated a possible interaction, revealing binding of EYA1 to MYC and loss of MYC expression upon targeting EYA1. Supporting a functional role for EYA1, targeting EYA1 expression decreased GSC proliferation, migration, and self-renewal in vitro and tumor growth in vivo. Collectively, our results suggest that phage display can identify novel therapeutic targets in stem-like tumor cells and that an EYA1-MYC axis represents a potential therapeutic paradigm for GBM.


Assuntos
Bacteriófagos , Neoplasias Encefálicas , Glioblastoma , Bacteriófagos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
3.
J Am Soc Nephrol ; 32(11): 2815-2833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716243

RESUMO

BACKGROUND: Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS: We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS: Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS: Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/fisiologia , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Néfrons/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Diferenciação Celular , Autorrenovação Celular , Imunoprecipitação da Cromatina , Técnicas de Introdução de Genes , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/embriologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Complexos Multiproteicos , Proteínas Nucleares/genética , Mapeamento de Interação de Proteínas , Proteínas Tirosina Fosfatases/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcriptoma
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(1): 129-138, 2022 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35545373

RESUMO

Branchio-oto syndrome (BOS)/branchio-oto-renal syndrome (BORS) is a kind of autosomal dominant heterogeneous disorder. These diseases are mainly characterized by hearing impairment and abnormal phenotype of ears, accompanied by renal malformation and branchial cleft anomalies including cyst or fistula, with an incidence of 1/40 000 in human population. Otic anormalies are one of the most obvious clinical manifestations of BOS/BORS, including deformities of external, middle, inner ears and hearing loss with conductive, sensorineural or mix, ranging from mild to profound loss. Temporal bone imaging could assist in the diagnosis of middle ear and inner ear malformations for clinicians. Multiple methods including direct sequencing combined with next generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), or array-based comparative genomic hybridization (aCGH) can effectively screen and identify pathogenic genes and/or variation types of BOS/BORS. About 40% of patients with BOS/BORS carry aberrations of EYA1 gene which is the most important cause of BOS/BORS. A total of 240 kinds of pathogenic variations of EYA1 have been reported in different populations so far, including frameshift, nonsense, missense, aberrant splicing, deletion and complex rearrangements. Human Endogenous Retroviral sequences (HERVs) may play an important role in mediating EYA1 chromosomal fragment deletion mutations caused by non-allelic homologous recombination. EYA1 encodes a phosphatase-transactivator cooperated with transcription factors of SIX1, participates in cranial sensory neurogenesis and development of branchial arch-derived organs, then regulates the morphological and functional differentiation of the outer ear, middle ear and inner ear toward normal tissues. In addition, pathogenic mutations of SIX1 and SIX5 genes can also cause BOS/BORS. Variations of these genes mentioned above may cause disease by destroying the bindings between SIX1-EYA1, SIX5-EYA1 or SIX1-DNA. However, the role of SIX5 gene in the pathogenesis of BORS needs further verification.


Assuntos
Síndrome Brânquio-Otorrenal , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Deleção Cromossômica , Hibridização Genômica Comparativa , Pesquisa em Genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/metabolismo , Linhagem , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
5.
J Cell Mol Med ; 25(23): 10980-10989, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773364

RESUMO

Deubiquitinating enzyme OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) has been shown to have an essential role in multiple carcinomas. However, the function of OTUB1 in papillary thyroid cancer (PTC) and the underlying mechanisms regulating PTC cells proliferation remain poorly understood. In this study, OTUB1 was significantly upregulated in papillary thyroid carcinoma tissues and cells. Through in vitro and in vivo experiments, knockdown of OTUB1 suppressed PTC cells growth whereas OTUB1 overexpression enhanced the proliferation ability of PTC cells. Moreover, the eyes absent homologue 1 (EYA1) was recognized as a potential target of OTUB1 through mass spectrometry analysis, and we further verified that EYA1 protein level was positively correlated with OTUB1 expression in PTC cells and clinical samples. Mechanistically, OTUB1 could interact with EYA1 directly and deubiquitinate EYA1 to stabilize it. At last, EYA1 was found to play an essential role in OTUB1-derived PTC cells growth. Overall, our investigation reveals that OTUB1 is a previously unrecognized oncogenic factor in PTC cells proliferation and suggests that OTUB1 might be a novel therapeutic target in PTC.


Assuntos
Proliferação de Células/genética , Enzimas Desubiquitinantes/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Neoplasias da Glândula Tireoide/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Oncogenes/genética , Transdução de Sinais/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima/genética
6.
Dev Biol ; 467(1-2): 39-50, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891623

RESUMO

The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.


Assuntos
Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas de Ligação a RNA/biossíntese , Crânio/embriologia , Proteínas de Xenopus/biossíntese , Animais , Ectoderma/embriologia , Crista Neural/embriologia , Xenopus laevis
7.
Cell Tissue Res ; 383(3): 979-986, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33242174

RESUMO

Taste substances are detected by taste receptor cells in the taste buds in the oral epithelium. Individual taste receptor cells contribute to evoking one of the five taste qualities: sweet, umami, bitter, sour, and salty (sodium). They are continuously replaced every few weeks by new ones generated from local epithelial stem cells. A POU transcription factor, Pou2f3 (also known as Skn-1a), regulates the generation and differentiation of sweet, umami, and bitter cells. However, the molecular mechanisms underlying terminal differentiation into these Pou2f3-dependent taste receptor cells remain unknown. To identify the candidate molecules that regulate the differentiation of these taste receptor cells, we searched for taste receptor type-specific transcription factors using RNA-sequence data of sweet and bitter cells. No transcription factor gene showing higher expression in sweet cells than in bitter cells was found. Eyes absent 1 (Eya1) was identified as the only transcription factor gene showing higher expression in bitter cells than in sweet cells. In situ hybridization revealed that Eya1 was predominantly expressed in bitter cells and also in the putative immature/differentiating taste bud cells in circumvallate and fungiform papillae and soft palate. Eya1 is a candidate molecule that regulates the generation and differentiation of bitter cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Nucleares/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Papilas Gustativas , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Paladar , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo
8.
Am J Med Genet A ; 185(1): 261-266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098377

RESUMO

Branchio-oto-renal spectrum disorder (BORSD) is a rare autosomal dominant condition characterized by ear abnormalities with hard of hearing/deafness, second branchial arch malformations and renal anomalies. Pathogenic variations in EYA1 gene are found in the majority of clinically diagnosed individuals with BORSD. We describe an infant with BORSD related to a paternally inherited heterozygous pathogenic variation in EYA1 gene presenting with poor growth and hypoglycemia due to growth hormone deficiency. Magnetic resonance imaging revealed a diminutive pituitary gland and morphologically abnormal sella. Upon initiation of growth hormone therapy, the hypoglycemia resolved and catch up growth ensued. Pituitary abnormalities have not been reported previously in patients with BORSD. The zebrafish ortholog of eya1 is important for the development of adenohypophysis, suggesting that this patient's growth hormone deficiency and pituitary abnormality are part of BORSD. Inclusion of screening for pituitary hormone deficiency and pituitary imaging should be considered as a part of surveillance in patients with BORSD.


Assuntos
Síndrome Brânquio-Otorrenal/diagnóstico , Hormônio do Crescimento/genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Síndrome Brânquio-Otorrenal/diagnóstico por imagem , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Feminino , Hormônio do Crescimento/deficiência , Humanos , Lactente , Hipófise/metabolismo , Hipófise/patologia , Adeno-Hipófise/diagnóstico por imagem , Adeno-Hipófise/metabolismo , Adeno-Hipófise/patologia
9.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920226

RESUMO

Here, we review the haloacid dehalogenase (HAD) class of protein phosphatases, with a particular emphasis on an unusual group of enzymes, the eyes absent (EYA) family. EYA proteins have the unique distinction of being structurally and mechanistically classified as HAD enzymes, yet, unlike other HAD phosphatases, they are protein tyrosine phosphatases (PTPs). Further, the EYA proteins are unique among the 107 classical PTPs in the human genome because they do not use a Cysteine residue as a nucleophile in the dephosphorylation reaction. We will provide an overview of HAD phosphatase structure-function, describe unique features of the EYA family and their tyrosine phosphatase activity, provide a brief summary of the known substrates and cellular functions of the EYA proteins, and speculate about the evolutionary origins of the EYA family of proteins.


Assuntos
Evolução Molecular , Genoma Humano/genética , Hidrolases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Cisteína/metabolismo , Humanos , Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Relação Estrutura-Atividade
10.
Am J Hum Genet ; 101(5): 789-802, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100090

RESUMO

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10-5 for novel LOF, increased to p = 4.1 × 10-6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10-7). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD.


Assuntos
Anormalidades Congênitas/genética , Exoma/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Alelos , Animais , Estudos de Casos e Controles , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Heterogeneidade Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Hereditariedade/genética , Homozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Fenótipo , RNA Longo não Codificante/genética , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética , Peixe-Zebra
11.
Development ; 144(4): 687-697, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087632

RESUMO

Animal organs are typically formed during embryogenesis by following one specific developmental programme. Here, we report that neuromast organs are generated by two distinct and sequential programmes that result in parallel sensory lines in medaka embryos. A ventral posterior lateral line (pLL) is composed of neuromasts deposited by collectively migrating cells whereas a midline pLL is formed by individually migrating cells. Despite the variable number of neuromasts among embryos, the sequential programmes that we describe here fix an invariable ratio between ventral and midline neuromasts. Mechanistically, we show that the formation of both types of neuromasts depends on the chemokine receptor genes cxcr4b and cxcr7b, illustrating how common molecules can mediate different morphogenetic processes. Altogether, we reveal a self-organising feature of the lateral line system that ensures a proper distribution of sensory organs along the body axis.


Assuntos
Mutação , Organogênese , Oryzias/embriologia , Oryzias/fisiologia , Animais , Padronização Corporal , Movimento Celular , Quimiocinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Sistema da Linha Lateral , Mecanorreceptores/metabolismo , Receptores CXCR/metabolismo
12.
Dev Neurosci ; 42(5-6): 170-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33472197

RESUMO

During neural development, stem and precursor cells can divide either symmetrically or asymmetrically. The transition between symmetric and asymmetric cell divisions is a major determinant of precursor cell expansion and neural differentiation, but the underlying mechanisms that regulate this transition are not well understood. Here, we identify the Sonic hedgehog (Shh) pathway as a critical determinant regulating the mode of division of cerebellar granule cell precursors (GCPs). Using partial gain and loss of function mutations within the Shh pathway, we show that pathway activation determines spindle orientation of GCPs, and that mitotic spindle orientation correlates with the mode of division. Mechanistically, we show that the phosphatase Eya1 is essential for implementing Shh-dependent GCP spindle orientation. We identify atypical protein kinase C (aPKC) as a direct target of Eya1 activity and show that Eya1 dephosphorylates a critical threonine (T410) in the activation loop. Thus, Eya1 inactivates aPKC, resulting in reduced phosphorylation of Numb and other components that regulate the mode of division. This Eya1-dependent cascade is critical in linking spindle orientation, cell cycle exit and terminal differentiation. Together these findings demonstrate that a Shh-Eya1 regulatory axis selectively promotes symmetric cell divisions during cerebellar development by coordinating spindle orientation and cell fate determinants.


Assuntos
Divisão Celular/fisiologia , Cerebelo/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Camundongos , Camundongos Mutantes , Células-Tronco Neurais/citologia , Transdução de Sinais/fisiologia
13.
Exp Cell Res ; 367(1): 37-46, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496520

RESUMO

Blood vessels are one of the major routes for the dissemination of cancer cells. Malignant tumors release growth factors such as vascular endothelial growth factor(VEGF) to induce angiogenesis, thereby promoting metastasis. Here, we report that The Drosophila Eyes Absent Homologue 1 (EYA1), which is overexpressed in colorectal tumor cells, can promote colorectal tumor angiogenesis by coordinating with the hypoxia-inducible factor 1 (HIF-1α) to increase the expression of VEGF-A. Moreover, data indicated that the enhancement of HIF-1α expression by Eya1 depended on its ability to activate the phosphatidylinositol 3-kinase (PI3K) signaling pathways to increase the phosphorylation of AKT subunits. Overexpression of Eya1 increased tumor angiogenesis in vivo and in vitro. Our study suggested that Eya1 is essential in regulating cancer cell-mediated angiogenesis and contributes to tumor growth, and that Eya1 provides a potential and specific target for new anti-angiogenesis drug development.


Assuntos
Neoplasias Colorretais/irrigação sanguínea , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neovascularização Patológica/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Tirosina Fosfatases/genética , Animais , Células CACO-2 , Feminino , Células HT29 , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Dev Biol ; 421(2): 171-182, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940157

RESUMO

Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS.


Assuntos
Orelha Interna/embriologia , Orelha Interna/metabolismo , Proteínas de Homeodomínio/metabolismo , Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Sequência de Aminoácidos , Animais , Morte Celular , Proliferação de Células , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Placa Neural/embriologia , Placa Neural/metabolismo , Ligação Proteica , Domínios Proteicos , Crânio/embriologia , Crânio/metabolismo , Transcrição Gênica , Xenopus laevis/genética
15.
BMC Med Genet ; 19(1): 139, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30086703

RESUMO

BACKGROUND: Branchio-oto-renal (BOR) syndrome is a dominant autosomal disorder characterized by phenotypes such as hearing loss, branchial fistulae, preauricular pits, and renal abnormalities. EYA1, the human homolog of the Drosophila "eye absent" gene on chromosome 8q13.3, is recognized as one of the most important genes associated with BOR syndrome. METHODS: The proposita in this study was a 5-year-old Chinese girl with hearing loss, bilateral otitis media with effusion, microtia, facial hypoplasia, palatoschisis, and bilateral branchial cleft fistulae. The girl's family members, except two who were deceased, agreed to undergo clinical examination. We collected blood samples from 10 family members, including six who were affected by the syndrome. Genomic DNA was extracted and subjected to Sanger sequencing. A minigene assay was performed to confirm whether splicing signals were altered. In addition, we performed western blotting to determine alterations in protein levels of the wild-type and mutant gene. RESULTS: Clinical tests showed that some of the family members met the criteria for BOR syndrome. The affected members harbored a novel heterozygous nonsense variation in exon 11 of EYA1, whereas no unaffected member carried the mutation at this position. Functional experiments did not detect abnormal splicing at the RNA level; however, western blotting showed that the mutated protein was truncated. CONCLUSIONS: This study reports a novel mutation associated with BOR syndrome in a Chinese family. We highlight the usefulness of genetic testing in the diagnosis of BOR syndrome. Thus, we believe that this report would benefit clinicians in this field.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Códon sem Sentido/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Povo Asiático , Pré-Escolar , DNA/genética , Éxons/genética , Feminino , Perda Auditiva/genética , Humanos , Masculino , Otite Média/genética , Linhagem , Fenótipo
16.
Pediatr Cardiol ; 39(1): 176-182, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29043394

RESUMO

Conotruncal heart defects (CTDs) represent a group of severe and complicated congenital cardiovascular malformations and require opportune clinical interventions once diagnosed. Occurrence of CTD is related to the functional abnormality of the second heart field (SHF), and variants of genes which regulate the development of the second heart field have been recognized as the main genetic factors leading to CTDs. Previous studies indicated that transcriptional complex SIX1/EYA1 may contribute to SHF development, and SIX1/EYA1 knockout mice exhibited a series of conotruncal malformations. Here, we recruited and sequenced 600 Chinese conotruncal heart defect patients and 300 controls. We screened out one novel SIX1 mutation (SIX1-K134R) and four EYA1 rare mutations (EYA1-A227T, EYA1-R296H, EYA1-Q397R, EYA1-G426S), all variants were present only in the case cohort, and the mutated sites were highly conserved. We then analyzed mutations by software including Sift, PolyPhen-2, PROVEAN, Mutation Taster, HOPE, and SWISS-PdbViewer. The results showed that the mutations had varying degrees of pathogenic risk, protein properties, spatial conformations, and domain functions which might be altered or influenced. Through biological and in silico analyses, our study suggests an association between SIX1/EYA1 mutations and cardiovascular malformations, SIX1/EYA1 mutations might be partially responsible for CTDs.


Assuntos
Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Povo Asiático/genética , Simulação por Computador , Análise Mutacional de DNA , Predisposição Genética para Doença , Humanos , Masculino , Mutação
17.
Int J Cancer ; 138(5): 1067-75, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26096807

RESUMO

The functional abnormality of developmental genes is a common phenomenon in cancer initiation and progression. The retinal determination gene network (RDGN) is a key signal in Drosophila eye specification, and this conservative pathway is also required for the development of multiple organs in mammalian species. Recent studies demonstrated that aberrant expressions of RDGN components in vertebrates, mainly Dach, Six, and Eya, represent a novel tumor signal. RDGN regulates proliferation, apoptosis, tumor growth and metastasis through interactions with multiple signaling pathways in a co-ordinated fashion; Dach acts as a tumor suppressor, whereas Six and Eya function as oncogenes. Clinical analyses demonstrated that the expression levels of RDGN correlate with tumor stage, metastasis and survival, suggesting that combinational detection of this pathway might be used as a promising biomarker for the stratification of therapy and for the prediction of the prognosis of cancer patients.


Assuntos
Proteínas do Olho/genética , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/etiologia , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Fatores de Transcrição/genética , Animais , Movimento Celular , Transição Epitelial-Mesenquimal , Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Invasividade Neoplásica , Proteínas Nucleares/fisiologia , Proteínas Tirosina Fosfatases/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia
18.
Am J Med Genet A ; 170(11): 2984-2987, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27542115

RESUMO

Recurrent 2.65 Mb deletions of 8q13.2q13.3 encompassing EYA1 have been recently described in the literature as a cause of branchio-oto-renal syndrome (BOR). Other clinical features of this recurrent microdeletion syndrome are still being delineated. We describe an additional patient with BOR due to microdeletion of 8q13.2q13.3. In addition to BOR related features, our patient presented with distal arthrogryposis that was detected prenatally, a phenotype that has not previously been described in patients with this deletion. © 2016 Wiley Periodicals, Inc.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Síndrome Brânquio-Otorrenal/diagnóstico , Síndrome Brânquio-Otorrenal/genética , Deleção Cromossômica , Cromossomos Humanos Par 8 , Adulto , Síndrome Brânquio-Otorrenal/terapia , Hibridização Genômica Comparativa , Fácies , Feminino , Humanos , Lactente , Masculino , Fenótipo , Gravidez , Recidiva , Ultrassonografia Pré-Natal
19.
Dev Dyn ; 244(7): 866-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903664

RESUMO

BACKGROUND: Specification of the metanephric mesenchyme is a central step of kidney development as this mesenchyme promotes nephric duct induction to form a ureteric bud near its caudal end. Before ureteric bud formation, the caudal nephric duct swells to form a pseudostratified epithelial domain that later emerges as the tip of the bud. However, the signals that promote the formation of the transient epithelial domain remain unclear. Here, we investigated the early roles of the mesenchymal factor Six family and its cofactor Eya on the initial induction of nephric duct development. RESULTS: The nephrogenic progenitor population is initially present but significantly reduced in mice lacking both Six1 and Six4 and undertakes an abnormal cell death pathway to be completely eliminated by ∼E10.5-E11.0, similar to that observed in Eya1(-/-) embryos. Consequently, the nephric duct fails to be induced to undergo normal proliferation to pseudostratify and form the ureteric bud in Six1(-/-) ;Six4(-/-) or Eya1(-/-) embryos. CONCLUSIONS: Our data support a model where Eya-Six may form a complex to regulate nephron progenitor cell development before metanephric specification and are critical mesenchymal factors for inducing nephric duct development.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Néfrons/embriologia , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo , Ureter/embriologia , Animais , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Néfrons/citologia , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Células-Tronco/citologia , Transativadores/genética , Ureter/citologia
20.
J Anat ; 227(3): 361-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26278933

RESUMO

The chicken is a well-established model for amniote (including human) skeletal muscle formation because the developmental anatomy of chicken skeletal muscle matches that of mammals. The accessibility of the chicken in the egg as well as the sequencing of its genome and novel molecular techniques have raised the profile of this model. Over the years, a number of regulatory and marker genes have been identified that are suited to monitor the progress of skeletal myogenesis both in wildtype and in experimental embryos. However, in the various studies, differing markers at different stages of development have been used. Moreover, contradictory results on the hierarchy of regulatory factors are now emerging, and clearly, factors need to be able to cooperate. Thus, a reference paper describing in detail and side-by-side the time course of marker gene expression during avian myogenesis is needed. We comparatively analysed onset and expression patterns of the key markers for the chicken immature paraxial mesoderm, for muscle-competent cells, for cells committed to myogenesis and for cells entering terminal differentiation. We performed this analysis from stages when the first paraxial mesoderm is being laid down to the stage when mesoderm formation comes to a conclusion. Our data show that, although the sequence of marker gene expression is the same at the various stages of development, the timing of the expression onset is quite different. Moreover, marker gene expression in myogenic cells being deployed from the dorsomedial and ventrolateral lips of the dermomyotome is different from those being deployed from the rostrocaudal lips, suggesting different molecular programs. Furthermore, expression of Myosin Heavy Chain genes is overlapping but different along the length of a myotube. Finally, Mef2c is the most likely partner of Mrf proteins, and, in contrast to the mouse and more alike frog and zebrafish fish, chicken Mrf4 is co-expressed with MyoG as cells enter terminal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Mesoderma/embriologia , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/genética , Fatores de Regulação Miogênica/genética , Animais , Biomarcadores/metabolismo , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Modelos Animais , Morfogênese , Proteínas Musculares/metabolismo , Fatores de Regulação Miogênica/metabolismo , Cadeias Pesadas de Miosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA