Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Appl Thromb Hemost ; 24(5): 741-748, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28752769

RESUMO

This study aimed to (1) identify F9 genetic alterations in patients with hemophilia B (HB) of Pakistani origin and (2) determine the genotype-phenotype relationships in these patients. Diagnosed cases of HB were identified through registries at designated tertiary health-care centers across the country. Consenting patients were enrolled into the study. The factor IX (FIX) coagulation activity (FIX:C) and key clinical features were recorded. Direct sequencing of F9 was carried out in all patients. All the variants identified were analyzed for functional consequences employing in silico analysis tools. Accession numbers from National Center of Biotechnology Information ClinVar database were retrieved for the novel variants. Genotype-FIX:C relationships were determined followed by FIX:C clinical phenotype assessment. A total of 52 patients with HB from 36 unrelated families were identified, which mainly comprised patients with moderate HB (n = 35; 67.3%). Among these, 35 patients from 22 unrelated families could be contacted and enrolled into the study. Missense variants were the most frequent (58.8%), followed by nonsense variants (17.6%). A missense, a short insertion, and a nonsense novel variants in exon 2, 6, and 7, respectively, were also identified. The disease manifested FIX:C heterogeneity in relation to the corresponding mutation in a significant number of cases. Clinical phenotype heterogeneity was also observed in relation to FIX:C-based severity assessment. We concluded that the registered FIX-deficient population of Pakistan mainly comprises moderate HB. F9 mutation spectrum in Pakistani patients with HB is heterogeneous. The HB population of Pakistan manifests a significant amount of genotype-FIX:C and FIX:C-clinical phenotype heterogeneities.


Assuntos
Estudos de Associação Genética , Hemofilia B/genética , Mutação , Códon sem Sentido , Estudos de Coortes , Análise Mutacional de DNA , Fator IX/genética , Heterogeneidade Genética , Humanos , Mutação de Sentido Incorreto , Paquistão/epidemiologia
2.
Blood Transfus ; 5(3): 158-63, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19204769

RESUMO

INTRODUCTION: The Italian database of factor IX gene (F9) mutations has been built since 2001 and is, so far, the most practical instrument for comprehensive genetic counselling, carrier detection and prenatal diagnosis. Over time the haemophilia B database has been enriched by entries on a larger number of patients and molecular genetic data identifying heterogeneous mutations spanning the entire F9. METHODS: Conformation sensitive gel electrophoresis is a variant of heteroduplex analysis, which has been applied for screening F9 for mutations, which are further fully characterised by direct sequencing of the amplified mutated regions. This project has involved 29 Italian haemophilia centres and provides data concerning the analysis of a cohort of 306 unrelated patients with haemophilia B (191 with severe, 67 with moderate and 48 with mild disease, including 8 patients with severe haemophilia B with inhibitors). The recorded data include levels of factor IX clotting activity, inhibitor status and clinical severity. RESULTS: Detailed analysis of the mutations revealed 164 different mutations, that are considered as unique molecular events (8 large deletions, 11 small deletions, 1 combined deletion/ insertion, 2 insertions, 104 missense, 20 nonsense, 14 mutations in a splicing site, 3 in the promoter and 1 silent). The data recorded in the Italian F9 mutation database provided the basis to study 85 families with haemophilia B, involving 180 females (20 obligate carriers, 106 carriers and 54 non-carriers) and enabled 14 prenatal diagnoses to be made in 12 females. CONCLUSIONS: Genetic analysis is required to determine female carrier status reliably. Female relatives may request carrier analysis, when a male relative is first diagnosed as having haemophilia or when they are pregnant. At present, the data collected in the Italian national register of mutations in haemophilia B provide the opportunity to perform prompt and precise determination of carrier status and prenatal diagnosis by specific mutation analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA