Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2107189119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35467977

RESUMO

Iron-dependent peroxidation of polyunsaturated fatty acids (PUFAs) leads to ferroptosis. While detoxification reactions removing lipid peroxides in phospholipids such as that catalyzed by glutathione peroxidase 4 (GPX4) protect cells from ferroptosis, the mechanism through which cells prevent PUFA peroxidation was not completely understood. We previously identified Fas-associated factor 1 (FAF1) as a protein directly interacting with free PUFAs through its UAS domain. Here we report that this interaction is crucial to protect cells from ferroptosis. In the absence of FAF1, cultured cells became sensitive to ferroptosis upon exposure to physiological levels of PUFAs, and mice developed hepatic injury upon consuming a diet enriched in PUFA. Mechanistically, we demonstrate that FAF1 assembles a globular structure that sequesters free PUFAs into a hydrophobic core, a reaction that prevents PUFA peroxidation by limiting its access to iron. Our study suggests that peroxidation of free PUFAs contributes to ferroptosis, and FAF1 acts upstream of GPX4 to prevents initiation of ferroptosis by limiting peroxidation of free PUFAs.


Assuntos
Ferroptose , Animais , Morte Celular , Linhagem Celular , Células Cultivadas , Ácidos Graxos Insaturados/farmacologia , Camundongos
2.
Neurobiol Dis ; 196: 106517, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679111

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.


Assuntos
Envelhecimento , Esclerose Lateral Amiotrófica , Encéfalo , Proteínas de Drosophila , Corpos de Inclusão , Animais , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Animais Geneticamente Modificados , Autofagia/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteína com Valosina/metabolismo , Proteína com Valosina/genética
3.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474516

RESUMO

FAF1 (FAS-associated factor 1) is involved in the activation of Fas cell surface death receptors and plays a role in apoptosis and necrosis. In patients with Parkinson's disease, FAF1 is overexpressed in dopaminergic neurons in the substantia nigra. KM-819, an FAF1 inhibitor, has shown potential for preventing dopaminergic neuronal cell death, promoting the degradation of α-synuclein and preventing its accumulation. This study aimed to develop and validate a quantitative analytical method for determining KM-819 levels in rat plasma using liquid chromatography-tandem mass spectrometry. This method was then applied to pharmacokinetic (PK) studies in rats. The metabolic stability of KM-819 was assessed in rat, dog, and human hepatocytes. In vitro metabolite identification and metabolic pathways were investigated in rat, dog, and human hepatocytes. The structural analog of KM-819, namely N-[1-(4-bromobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl]-2-(phenylsulfanyl) acetamide, served as the internal standard (IS). Proteins were precipitated from plasma samples using acetonitrile. Analysis was carried out using a reverse-phase C18 column with a mobile phase consisting of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile. The analytical method developed for KM-819 exhibited linearity within the concentration range of 0.002-10 µg/mL in rat plasma. The precision and accuracy of the intra- and inter-day measurements were <15% for the lower limit of quantification (LLOQ) and all quality control samples. KM-819 demonstrated stability under various sample storage conditions (6 h at room temperature (25 °C), four weeks at -20 °C, three freeze-thaw cycles, and pretreated samples in the autosampler). The matrix effect and dilution integrity met the criteria set by the Food and Drug Administration and the European Medicines Agency. This sensitive, rapid, and reliable analytical method was successfully applied in pharmacokinetic studies in rats. Pharmacokinetic analysis revealed the dose-independent kinetics of KM-819 at 0.5-5 mg/kg, with a moderate oral bioavailability of ~20% in rats. The metabolic stability of KM-819 was also found to be moderate in rat, dog, and human hepatocytes. Metabolite identification in rat, dog, and human hepatocytes resulted in the discovery of six, six, and eight metabolites, respectively. Glucuronidation and mono-oxidation have been proposed as the major metabolic pathways. Overall, these findings contribute to a better understanding of the pharmacokinetic characteristics of KM-819, thereby aiding future clinical studies.


Assuntos
Formiatos , Compostos Orgânicos , Doença de Parkinson , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Cães , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Acetonitrilas , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
4.
Fish Shellfish Immunol ; 136: 108714, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36990260

RESUMO

Caspar, a homolog of the Fas-associated factor 1 (FAF1) family, contains an N-terminal ubiquitin interaction domain, a ubiquitin-like self-association domain, and a C-terminal ubiquitin regulatory domain. Caspar has been reported to be involved in the antibacterial immunity of Drosophila, which is unclear whether it is involved in the antibacterial immune process of crustaceans. In this article, we identified a Caspar gene in Eriocheir sinensis and named it EsCaspar. EsCaspar positively respond to bacterial stimulation and downregulate the expression of certain associated antimicrobial peptides by inhibiting the nuclear translocation of EsRelish. Thus, EsCaspar might be a suppressor of the immune deficiency (IMD) pathway that prevents over-activation of the immune system. Indeed, excess EsCaspar protein in crabs reduced resistance to bacterial infection. In conclusion, EsCaspar is a suppressor of the IMD pathway in crabs that plays a negative regulatory role in antimicrobial immunity.


Assuntos
Braquiúros , Drosophila , Animais , Ubiquitinas , Braquiúros/genética , Imunidade Inata/genética
5.
Oral Dis ; 28(8): 2204-2214, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34255421

RESUMO

OBJECTIVES: Non-syndromic cleft palate only (NSCPO) is a common congenital deformity with complex etiologies. GRHL3, FAF1, and KCNJ2 have been reported to be involved in the pathogenesis of NSCPO. Up till now, there have been no replication studies based on large Han Chinese. Therefore, this study aimed to investigate associations between GRHL3, FAF1, KCNJ2, and NSCPO sub-phenotypes patients in Han Chinese. MATERIALS AND METHODS: Firstly, we selected 2 SNPs based on previous literatures: FAF1 (rs3827730) and GRHL3 (rs41268753). Also, we selected 8 tagSNPs in GRHL3 (rs557811, rs609352, rs10903078, rs6659209, rs12401714, rs12568599, rs3887581, rs12024148) and 2 tagSNPs in KCNJ2 (rs75855040 and rs236514). Afterward, we evaluated these SNPs among 1668 NSCPO patients and 1811 normal controls from Han Chinese. Following data were analyzed by PLINK and Haploview program. RESULTS: Association analysis under additive model showed that allele A at rs12568599 in GRHL3 gene is significantly associated with NSCPO (p = 0.0034, OR = 1.38 and 95%CI: 1.11-1.72) and its sub-phenotype incomplete cleft palate (ICP) (p = 0.0039, OR = 1.4 and 95%CI: 1.11-1.75), and it could increase the risk of both NSCPO and ICP. CONCLUSIONS: This study firstly found that rs12568599 in GRHL3 is associated with NSCPO and ICP in Han Chinese, indicating that sub-phenotypes of NSCPO have different etiologies.


Assuntos
Fenda Labial , Fissura Palatina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Estudos de Casos e Controles , China , Fenda Labial/genética , Fissura Palatina/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Canais de Potássio Corretores do Fluxo de Internalização , Fatores de Transcrição/genética
6.
J Cell Mol Med ; 25(19): 9460-9472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464509

RESUMO

Fas-associated factor 1 (FAF1) has gained a reputation as a member of the FAS death-inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE-19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii-induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii-induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1-dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Fator Regulador 3 de Interferon/metabolismo , Toxoplasma/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Células Cultivadas , Imunofluorescência , Proteína Forkhead Box O1/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
7.
J Clin Lab Anal ; 35(11): e24008, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34545638

RESUMO

BACKGROUND: Recently, measurement of serum circular RNAs (circRNAs) as a non-invasive tumor marker has been considered more. We designed the present study to investigate the diagnostic efficiency of serum Circ-ELP3 and Circ-FAF1, separately and simultaneously, for diagnosis of patients with breast cancer. METHODS: Seventy-eight female patients diagnosed as primary breast cancer participated in this study. We measured the level of circRNAs in serum specimens of the studied subjects. A receiver operating characteristic (ROC) curve was plotted and the diagnostic efficiency for both circRNAs was determined. RESULTS: Compared to non-cancerous controls, Circ-ELP3 was upregulated in breast cancer patients (p-value = 0.004). On the other hand, serum Circ-FAF1 was seen to be decreased in breast cancer patients than controls (p-value = 0.001). According to ROC curve results, the area under the curve (AUC) for Circ-ELP3 and Circ-FAF1 was 0.733 and 0.787, respectively. Furthermore, the calculated sensitivity and specificity for Circ-ELP3 and Circ-FAF1 were 65, 64% and 77, 74%, respectively. Merging both circRNAs increased the diagnostic efficiency, with a better AUC, sensitivity and specificity values of 0.891, 96 and 62%, respectively. CONCLUSION: Briefly, our results revealed the high diagnostic value for combined circRNAs panel, including Circ-ELP3 and Circ-FAF1 as a non-invasive marker, in detection of breast carcinomas.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/diagnóstico , RNA Circular/sangue , Adulto , Neoplasias da Mama/sangue , Neoplasias da Mama/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Curva ROC
8.
Cell Commun Signal ; 18(1): 133, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831099

RESUMO

BACKGROUND: Fas-associated factor 1 (FAF1) has been implicated in Parkinson's disease (PD) and activates the cell death machinery in the cytosol. However, the presence of extracellular FAF1 has not been studied. METHODS: Serum-free conditioned medium (CM) from FAF1-transfected SH-SY5Y cells was concentrated and analyzed by western blotting. Exosomes were isolated from CM by ultracentrifugation and analyzed by western blotting, electron microscopy and nanoparticle tracking analysis. Soluble FAF1 from CM was immunodepleted using anti-FAF1 antibody. Transmission of secreted FAF1 was examined by transwell assay under a confocal microscope. CM-induced cell death was determined by measuring propidium iodide (PI) uptake using a flow cytometer. RESULTS: FAF1 was secreted from SH-SY5Y cells via exocytosis and brefeldin A (BFA)-resistant secretory pathways. Furthermore, FAF1 was secreted as a vesicle-free form and a genuine exosome cargo in the lumen of exosomes. In addition, FAF1 increased the number of exosomes, suggesting a regulatory role in exosome biogenesis. Extracellular FAF1 was transmitted via endocytosis to neighboring cells, where it induced cell death through apoptotic and necrotic pathways. CONCLUSIONS: This study presents a novel route by which FAF1 induces neuronal death through cell-to-cell transmission. Video Abstract.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Exocitose , Exossomos/metabolismo , Exossomos/ultraestrutura , Células HEK293 , Humanos , Camundongos , Células RAW 264.7
9.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1335-1348, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28414080

RESUMO

Cell death depends on the balance between the activities of pro- and anti-apoptotic factors. X-linked inhibitor of apoptosis protein (XIAP) plays an important role in the cytoprotective process by inhibiting the caspase cascade and regulating pro-survival signaling pathways. While searching for novel interacting partners of XIAP, we identified Fas-associated factor 1 (FAF1). Contrary to XIAP, FAF1 is a pro-apoptotic factor that also regulates several signaling pathways in which XIAP is involved. However, the functional relationship between FAF1 and XIAP is unknown. Here, we describe a new interaction between XIAP and FAF1 and describe the functional implications of their opposing roles in cell death and NF-κB signaling. Our results clearly demonstrate the interaction of XIAP with FAF1 and define the specific region of the interaction. We observed that XIAP is able to block FAF1-mediated cell death by interfering with the caspase cascade and directly interferes in NF-κB pathway inhibition by FAF1. Furthermore, we show that XIAP promotes ubiquitination of FAF1. Conversely, FAF1 does not interfere with the anti-apoptotic activity of XIAP, despite binding to the BIR domains of XIAP; however, FAF1 does attenuate XIAP-mediated NF-κB activation. Altered expression of both factors has been implicated in degenerative and cancerous processes; therefore, studying the balance between XIAP and FAF1 in these pathologies will aid in the development of novel therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Apoptose , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , NF-kappa B/metabolismo , Ligação Proteica , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química
10.
Cell Commun Signal ; 16(1): 56, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200976

RESUMO

BACKGROUND: Aberrant cell death induced by ischemic stress is implicated in the pathogenesis of ischemic diseases. Fas-associated factor 1 (FAF1) has been identified as a death-promoting protein. This study demonstrates that FAF1 functions in death signaling triggered by ischemic insult. METHODS: The expression changes of FAF1 and phophorylated JNK1 were detected by Western blotting. Immunoprecipitation was employed to investigate protein-protein interaction. We determined the cell death using flow cytometry and lactate dehydrogenase release measurement. To validate the death-promoting role of FAF1 in the retina, we generated conditional retinal FAF1 knockout mice. We used hematoxylin and eosin staining to detect retinal cell death in retinal ganglion cell layer. RESULTS: FAF1 was found to function upstream of c-Jun N-terminal kinase 1 (JNK1), followed by mitochondrial dysregulation and necrotic cell death processes upon ischemic insult. We investigated whether FAF1 is involved in the pathogenesis of ischemic diseases using a retinal ischemia model. Indeed, FAF1 potentiated necrosis through JNK1 activation upon ischemic stress in retinal cells demonstrating retinal ganglion-like character. Conditional FAF1 depletion attenuated JNK1 activation in the retinas of Dkk3-Cre;Faf1flox/flox mice and ameliorated death of retinal cells due to elevated intraocular pressure (IOP). CONCLUSIONS: Our results show that FAF1 plays a key role in ischemic retinal damage and may be implicated in the pathogenesis of retinal ischemic disease.


Assuntos
Proteínas de Transporte/metabolismo , Isquemia/patologia , Mitocôndrias/patologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Células Ganglionares da Retina/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Linhagem Celular , Progressão da Doença , Deleção de Genes , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Necrose/patologia , Oxigênio/metabolismo , Degeneração Retiniana/metabolismo
11.
J Reprod Dev ; 64(2): 173-177, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29434078

RESUMO

Fas-associated protein factor 1 (FAF1) is a Fas-associated protein that functions in multiple cellular processes. Previous research showed that mutations in Faf1 led to the lethality of cleavage stage embryos in a mouse model. The aim of the present study was to analyze the expression pattern, localization, and function of FAF1 in meiotic resumption of mouse oocytes. FAF1 was exclusively expressed in oocytes at various follicular stages within the ovary and was predominantly localized in the cytoplasm of growing oocytes. Furthermore, Faf1 mRNA and protein were persistently present during oocyte maturation and Faf1 mRNA levels were similar in the germinal vesicle (GV), GV breakdown (GVBD), and metaphase II (MII) stages of oocytes. Moreover, knockdown of Faf1 in GV-stage oocytes led to a significantly decreased rate of GVBD. To our knowledge, these results provide the first evidence regarding a novel function of FAF1 in meiotic resumption in mouse oocytes.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mitose , Oócitos/metabolismo , Oogênese , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Forma do Núcleo Celular , Citoplasma/metabolismo , Feminino , Imuno-Histoquímica , Técnicas de Maturação in Vitro de Oócitos , Peptídeos e Proteínas de Sinalização Intracelular , Metáfase , Camundongos Endogâmicos ICR , Microinjeções , Microscopia de Fluorescência , Oócitos/citologia , Interferência de RNA
12.
Bioorg Med Chem Lett ; 26(4): 1169-72, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26810261

RESUMO

To study the molecular action of ischemic Fas-mediated cell death inhibitor, we prepared fluorescent-tagged and biotin-tagged probes of the potent inhibitor, KR-33494, of ischemic cell death. We used the molecular modeling technique to find the proper position for attaching those probes with minimum interference in the binding process of probes with Fas-mediated cell death target, FAF1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Biotina/química , Desenho de Fármacos , Corantes Fluorescentes/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína
13.
Anim Genet ; 47(5): 570-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27422688

RESUMO

Equine osteochondrosis (OC) is a frequent developmental orthopaedic disease with high economic impact on the equine industry and may lead to premature retirement of the animal as a result of chronic pain and lameness. The genetic background of OC includes different genes affecting several locations; however, these genetic associations have been tested in only one or few populations, lacking the validation in others. The aim of this study was to identify the genetic determinants of OC in the Spanish Purebred horse breed. For that purpose, we used a candidate gene approach to study the association between loci previously implicated in the onset and development of OC in other breeds and different OC locations using radiographic data from 144 individuals belonging to the Spanish Purebred horse breed. Of the 48 polymorphisms analysed, three single nucleotide polymorphisms (SNPs) located in the FAF1, FCN3 and COL1A2 genes were found to be associated with different locations of OC lesions. These data contribute insights into the complex gene networks underlying the multifactorial disease OC, and the associated SNPs could be used in a marker-assisted selection strategy to improve horse health, welfare and competitive lifespan.


Assuntos
Doenças dos Cavalos/genética , Cavalos/genética , Osteocondrose/veterinária , Polimorfismo de Nucleotídeo Único , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cruzamento , Colágeno Tipo I/genética , Frequência do Gene , Estudos de Associação Genética , Técnicas de Genotipagem , Glicoproteínas/genética , Osteocondrose/genética , Fenótipo , Espanha
14.
Regul Toxicol Pharmacol ; 81: 387-396, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27664323

RESUMO

KR33493, a newly developed FAS-associated factor 1 (FAF1) inhibitor for Parkinson's disease, is being evaluated in a Phase I clinical trial. In the present study, the subchronic toxicity of KR33493 in Sprague-Dawley (SD) rats and beagle dogs was investigated at various oral doses for 28 and 14 days, respectively. During the study, food consumption, body weights, organ weights, gross findings, and mortality were examined; and ophthalmoscopy, electrocardiography, hematology, serum biochemistry, urinalysis, histopathology, and toxicokinetics were performed. In rats, weight gain decreased in both sexes at 500 mg/kg/day, with no significant differences. In dogs, some significant differences compared with the control were found during the trial; however, at the end of recovery periods, these were no longer observed and there was no dose correlation. Some histopathological findings were observed, but these were considered as incidental changes. Since no other significant changes were observed, doses above 500 and 1000 mg/kg KR33493 in rat and dogs, respectively, caused no observed adverse effects. Therefore, based on these results, the Phase 1 clinical trial for KR33493 was approved by the Korean Food & Drug Administration.


Assuntos
Acetamidas/toxicidade , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antiparkinsonianos/toxicidade , Pirazóis/toxicidade , Acetamidas/administração & dosagem , Acetamidas/química , Administração Oral , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/química , Ensaios Clínicos Fase I como Assunto , Cães , Relação Dose-Resposta a Droga , Feminino , Masculino , Doença de Parkinson/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/química , Ratos , Ratos Sprague-Dawley
15.
J Biol Chem ; 289(17): 12077-12084, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24619421

RESUMO

p97, also known as valosin-containing protein, is a versatile participant in the ubiquitin-proteasome system. p97 interacts with a large network of adaptor proteins to process ubiquitylated substrates in different cellular pathways, including endoplasmic reticulum-associated degradation and transcription factor activation. p97 and its adaptor Fas-associated factor-1 (FAF1) both have roles in the ubiquitin-proteasome system during NF-κB activation, although the mechanisms are unknown. FAF1 itself also has emerging roles in other cell-cycle pathways and displays altered expression levels in various cancer cell lines. We have performed a detailed study the p97-FAF1 interaction. We show that FAF1 binds p97 stably and in a stoichiometry of 3 to 6. Cryo-EM analysis of p97-FAF1 yielded a 17 Å reconstruction of the complex with FAF1 above the p97 ring. Characteristics of p97-FAF1 uncovered in this study reveal common features in the interactions of p97, providing mechanistic insight into how p97 mediates diverse functionalities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de Apoptose , Calorimetria , Microscopia Crioeletrônica , Ligação Proteica , Ultracentrifugação , Proteína com Valosina
16.
BMC Mol Cell Biol ; 25(1): 2, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172660

RESUMO

BACKGROUND: Fas-associated factor 1 (FAF1) is a multidomain protein that interacts with diverse partners to affect numerous cellular processes. Previously, we discovered two Small Ubiquitin-like Modifier (SUMO)-interacting motifs (SIMs) within FAF1 that are crucial for transcriptional modulation of mineralocorticoid receptor. Recently, we identified Sin3A-associated protein 130 (SAP130), a putative sumoylated protein, as a candidate FAF1 interaction partner by yeast two-hybrid screening. However, it remained unclear whether SAP130 sumoylation might occur and functionally interact with FAF1. RESULTS: In this study, we first show that SAP130 can be modified by SUMO1 at Lys residues 794, 878 and 932 both in vitro and in vivo. Mutation of these three SUMO-accepting Lys residues to Ala had no impact on SAP130 association with Sin3A or its nuclear localization, but the mutations abrogated the association of SAP130 with the FAF1. The mutations also potentiated SAP130 trans-repression activity and attenuated SAP130-mediated promotion of cell growth. Additionally, SUMO1-modified SAP130 was less stable than unmodified SAP130. Transient transfection experiments further revealed that FAF1 mitigated the trans-repression and cell proliferation-promoting functions of SAP130, and promoted SAP130 degradation by enhancing its polyubiquitination in a sumoylation-dependent manner. CONCLUSIONS: Together, these results demonstrate that sumoylation of SAP130 regulates its biological functions and that FAF1 plays a crucial role in controlling the SUMO-dependent regulation of transcriptional activity and protein stability of SAP130.


Assuntos
Sumoilação , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Ubiquitinação , Estabilidade Proteica
17.
In Vitro Cell Dev Biol Anim ; 60(6): 628-643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578382

RESUMO

Oxidative stress and apoptosis play crucial roles in myocardial ischemia‒reperfusion injury (MIRI). In this study, we investigated the role of circ_0073932 in MIRI as well as its molecular mechanism. A hypoxia/reoxygenation (H/R) cardiomyocyte model was established with H9C2 cardiomyocytes, and RT-qPCR was used to measure gene expression. We observed that circ_0073932 expression was abnormally increased in the H/R cardiomyocyte model and in blood samples from MIRI patients. Inhibition of circ_0073932 suppressed H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. Dual luciferase reporter assays showed that circ_0073932 targeted the downregulation of miR-493-3p, and miR-493-3p targeted the downregulation of FAF1. Furthermore, si-circ_0073932, an miR-493-3p inhibitor, oe-FAF1, or si-FAF1 were transfected into H9C2 cardiomyocytes to investigate the roles of these factors in MIRI. Our results showed that compared with the H/R group, si-circ_0073932 inhibited H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. These results were reversed by the miR-493-3p inhibitor or oe-FAF1. Finally, a rat model of MIRI was established, and si-circ_0073932 was administered. Inhibition of circ_0073932 reduced the area of myocardial infarction and decreased the levels of apoptosis and oxidative stress by inhibiting the JNK signaling pathway. Our study indicated that circ_0073932 mediates MIRI via miR-493-3p/FAF1/JNK in vivo and in vitro, revealing novel insights into the pathogenesis of MIRI and providing a new target for the clinical treatment of MIRI.


Assuntos
Apoptose , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Estresse Oxidativo , RNA Circular , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/genética , Animais , Humanos , Ratos , Estresse Oxidativo/genética , Linhagem Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Masculino , Regulação para Baixo/genética , Sistema de Sinalização das MAP Quinases/genética
18.
Curr Oncol ; 30(11): 9484-9500, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999107

RESUMO

Fas-associated factor 1 (FAF1) is a death-promoting protein identified as an interaction partner of the death receptor Fas. The downregulation and mutation of FAF1 have been reported in a variety of human tumors, but there have been few studies on lung cancer. Here, we investigated the prognostic significance of FAF1 expression in non-small-cell lung cancer (NSCLC), and whether aberrant FAF1 expression may be involved in the pathogenesis and prognosis of NSCLC. FAF1 expression was examined in NSCLC specimens as well as human lung cancer cell lines. In addition, changes in cell viability and apoptosis upon regulating FAF1 expression were investigated in lung cancer cell lines. As a result, high FAF1 expression was significantly associated with a poor prognosis in NSCLC. In lung cancer cell lines, FAF1 downregulation hindered cell viability and tended to promote early apoptosis. In conclusion, this is the first study of the clinical significance of FAF1 in NSCLC, showing that FAF1 overexpression is associated with a poor prognosis in NSCLC and that FAF1 acts as a dangerous factor rather than an apoptosis promoter in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fibrinogênio , Prognóstico , Proteínas Reguladoras de Apoptose/genética
19.
ACS Chem Neurosci ; 13(6): 806-817, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230076

RESUMO

α-Synuclein accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Previously, we reported that Fas-associated factor 1 (FAF1), which plays a role in PD pathogenesis, potentiates α-synuclein accumulation through autophagy impairment in dopaminergic neurons. In this study, we show that KM-819, a FAF1-targeting compound, which has completed phase I clinical trials, interferes with α-synuclein accumulation in the mouse brain, as well as in human neuronal cells (SH-SY5Ys). KM-819 suppressed the accumulation of monomeric, oligomeric, and aggregated forms of α-synuclein in neuronal cells. Furthermore, KM-819 restored the turnover rate of α-synuclein in FAF1-overexpressing SH-SY5Y cells, implicating KM-819-mediated reconstitution of the α-synuclein degradative pathway. In addition, KM-819 reconstituted autophagic flux in FAF1-transfected SH-SY5Y cells, also suppressing α-synuclein-induced mitochondrial dysfunction. Moreover, oral administration of KM-819 also interfered with α-synuclein accumulation in the midbrain of mice overexpressing FAF1 via an adeno-associated virus system. Consistently, KM-819 reduced α-synuclein accumulation in both the hippocampus and the midbrain of human A53T α-synuclein transgenic mice. Collectively, these data imply that KM-819 may have therapeutic potential for patients with PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
20.
Elife ; 112022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920641

RESUMO

The p97/Cdc48 ATPase and its ubiquitin receptors Ufd1-Npl4 are essential to unfold ubiquitylated proteins in many areas of eukaryotic cell biology. In yeast, Cdc48-Ufd1-Npl4 is controlled by a quality control mechanism, whereby substrates must be conjugated to at least five ubiquitins. Here, we show that mammalian p97-UFD1-NPL4 is governed by a complex interplay between additional p97 cofactors and the number of conjugated ubiquitins. Using reconstituted assays for the disassembly of ubiquitylated CMG (Cdc45-MCM-GINS) helicase by human p97-UFD1-NPL4, we show that the unfoldase has a high ubiquitin threshold for substrate unfolding, which can be reduced by the UBX proteins UBXN7, FAF1, or FAF2. Our data indicate that the UBX proteins function by binding to p97-UFD1-NPL4 and stabilising productive interactions between UFD1-NPL4 and K48-linked chains of at least five ubiquitins. Stimulation by UBXN7 is dependent upon known ubiquitin-binding motifs, whereas FAF1 and FAF2 use a previously uncharacterised coiled-coil domain to reduce the ubiquitin threshold of p97-UFD1-NPL4. We show that deleting the Ubnx7 and Faf1 genes impairs CMG disassembly during S-phase and mitosis and sensitises cells to reduced ubiquitin ligase activity. These findings indicate that multiple UBX proteins are important for the efficient unfolding of ubiquitylated proteins by p97-UFD1-NPL4 in mammalian cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares , Ubiquitinas , Proteína com Valosina , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Ubiquitinas/metabolismo , Proteína com Valosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA