Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
EMBO J ; 39(10): e103841, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32149426

RESUMO

Accumulated unfolded proteins in the endoplasmic reticulum (ER) trigger the unfolded protein response (UPR) to increase ER protein folding capacity. ER proteostasis and UPR signaling need to be regulated in a precise and timely manner. Here, we identify phosphorylation of protein disulfide isomerase (PDI), one of the most abundant and critical folding catalysts in the ER, as an early event during ER stress. The secretory pathway kinase Fam20C phosphorylates Ser357 of PDI and responds rapidly to various ER stressors. Phosphorylation of Ser357 induces an open conformation of PDI and turns it from a "foldase" into a "holdase", which is critical for preventing protein misfolding in the ER. Phosphorylated PDI also binds to the lumenal domain of IRE1α, a major UPR signal transducer, and attenuates excessive IRE1α activity. Importantly, PDI-S359A knock-in mice display enhanced IRE1α activation and liver damage under acute ER stress. We conclude that the Fam20C-PDI axis constitutes a post-translational response to maintain ER proteostasis and plays a vital role in protecting against ER stress-induced cell death.


Assuntos
Caseína Quinase I/metabolismo , Endorribonucleases/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Pró-Colágeno-Prolina Dioxigenase/química , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Estresse do Retículo Endoplasmático , Feminino , Células HeLa , Células Hep G2 , Humanos , Masculino , Camundongos , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteostase , Resposta a Proteínas não Dobradas
2.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349020

RESUMO

Family with sequence similarity 20C (Fam20C), the major protein kinase in the secretory pathway, generates the vast majority of the secreted phosphoproteome. However, the regulatory mechanisms of Fam20C transport, secretion, and function remain largely unexplored. Here, we show that Fam20C exists as a type II transmembrane protein within the secretory compartments, with its N-terminal signal peptide-like region serving as a membrane anchor for Golgi retention. The secretion and kinase activity of Fam20C are governed by site-1 protease (S1P), a key regulator of cholesterol homeostasis. We find that only mature Fam20C processed by S1P functions in osteoblast differentiation and mineralization. Together, our findings reveal a unique mechanism for Fam20C secretion and activation via proteolytic regulation, providing a molecular link between biomineralization and lipid metabolism.


Assuntos
Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Motivos de Aminoácidos , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caseína Quinase I/genética , Diferenciação Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Camundongos , Mutação , Osteoblastos/citologia , Osteoblastos/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Domínios Proteicos , Transporte Proteico , Pirrolidinas/farmacologia , Via Secretória , Serina Endopeptidases/genética
3.
J Cell Physiol ; 238(11): 2556-2569, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37698039

RESUMO

Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease. In this study, we aimed to investigate the influence of FAM20C mutations on skeletogenesis. We developed transgenic mice expressing Fam20c mutations mimicking those associated with human lethal and nonlethal Raine syndrome. The results revealed that transgenic mice expressing the mutant Fam20c found in the lethal (KO;G374R) and nonlethal (KO;D446N) Raine syndrome exhibited osteomalacia without osteosclerotic features. Additionally, both mutants significantly increased the expression of the Fgf23, indicating that Fam20c deficiency in skeletal compartments causes hypophosphatemia rickets. Furthermore, as FAM20C kinase activity catalyzes the phosphorylation of secreted proteomes other than those in the skeletal system, global FAM20C deficiency may trigger alterations in other systems resulting in osteosclerosis secondary to hypophosphatemia rickets. Together, the findings of this study suggest that FAM20C deficiency primarily causes hypophosphatemia rickets or osteomalacia; however, the heterogeneous skeletal manifestation in Raine syndrome was not determined solely by specific mutations of FAM20C. The findings also implicated that rickets or osteomalacia caused by FAM20C deficiency would deteriorate into osteosclerosis by the defects from other systems or environmental impacts.


Assuntos
Hipofosfatemia , Osteomalacia , Osteosclerose , Raquitismo , Camundongos , Animais , Humanos , Osteomalacia/complicações , Osteomalacia/genética , Osteosclerose/genética , Osteosclerose/complicações , Mutação/genética , Raquitismo/complicações , Camundongos Transgênicos , Hipofosfatemia/genética , Hipofosfatemia/complicações , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação ao Cálcio/genética
4.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35535508

RESUMO

In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5' exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.


Assuntos
Ameloblastos , Tubarões , Animais , Proteínas de Ligação ao Cálcio/genética , Evolução Molecular , Filogenia , Tubarões/genética , Vertebrados/genética
5.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240249

RESUMO

FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS.


Assuntos
Microcefalia , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Microcefalia/genética , Encéfalo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo
6.
EMBO J ; 37(14)2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29858230

RESUMO

Family with sequence similarity 20C (Fam20C), the physiological Golgi casein kinase, phosphorylates numerous secreted proteins that are involved in a wide variety of biological processes. However, the role of Fam20C in regulating proteins in the endoplasmic reticulum (ER) lumen is largely unknown. Here, we report that Fam20C interacts with various luminal proteins and that its depletion results in a more reduced ER lumen. We further show that ER oxidoreductin 1α (Ero1α), the pivotal sulfhydryl oxidase that catalyzes disulfide formation in the ER, is phosphorylated by Fam20C in the Golgi apparatus and retrograde-transported to the ER mediated by ERp44. The phosphorylation of Ser145 greatly enhances Ero1α oxidase activity and is critical for maintaining ER redox homeostasis and promoting oxidative protein folding. Notably, phosphorylation of Ero1α is induced under hypoxia, reductive stress, and secretion-demanding conditions such as mammalian lactation. Collectively, our findings open a door to uncover how oxidative protein folding is regulated by phosphorylation in the secretory pathway.


Assuntos
Caseína Quinase I/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Processamento de Proteína Pós-Traducional , Células HeLa , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredução , Fosforilação , Transporte Proteico
7.
Eur J Oral Sci ; 129(3): e12795, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905141

RESUMO

FAM20C (family with sequence similarity 20-member C), a kinase that phosphorylates secretory proteins, plays essential roles in various biological processes. In humans, mutations in FAM20C gene cause Raine syndrome, an autosomal recessive hereditary disease manifesting a broad spectrum of developmental defects including skeletal and craniofacial deformities. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets and that high phosphate (hPi) diet significantly improved the development of the skeleton in Fam20c-deficient mice. In this study, we evaluated the effects of hPi diet on the formation of dentin in Fam20c-deficient mice, using plain x-ray radiography, micro-computed tomography (µCT), histology, and immunohistochemistry. Plain x-ray radiography and µCT analyses showed that the hPi diet improved the dentin volume fraction and dentin mineral density of the Fam20c-deficient mice. Histology analyses further demonstrated that the hPi diet dramatically improved the integrity of the mandibular first molars and prevented pulp infection and dental abscesses in Fam20c-deficient mice. Our results support that the hPi diet significantly increased the formation and mineralization of dentin in Fam20c-deficient mice, implying that hypophosphatemia is a significant contributor to the dentin defects in Fam20c-deficient subjects.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular , Animais , Proteínas de Ligação ao Cálcio/genética , Dentina/metabolismo , Dieta , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Knockout , Fosfatos , Microtomografia por Raio-X
8.
BMC Pediatr ; 21(1): 113, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676444

RESUMO

BACKGROUND: Bi-allelic mutations in FAM20C gene are known to cause a rare genetic disorder- Raine syndrome (RS). The FAM20C protein binds calcium and phosphorylates proteins involved in biomineralization of bones and teeth. RS is recognized as an osteosclerotic bone dysplasia. It is characterized by distinctive facial features, generalized osteosclerosis and respiratory insufficiency along with periosteal bone formation. RS is typically described as being an aggressive skeletal dysplasia with death in the neonatal period or early infancy. However, in the recent past an increasing number of individuals having an extended life span along with a highly heterogeneous phenotype has led to classifying RS into short and extended lifespan categories. CASE PRESENTATION: We report a case of RS with antenatal fractures, facial dysmorphism and osteosclerosis without significant respiratory manifestations. The child has a relatively extended lifespan, whereby she died at 17-months of age. Clinical exome sequencing revealed a previously known, homozygous, nonsense variant c.1680C > A (p.Cys560Ter) in exon 10 of FAM20C. Whilst the variant was initially classified as a variant of uncertain significance (VUS), through the latest release of gnomAD and GTEx data, this was subsequently re-classified as likely pathogenic. Furthermore, segregation analysis showed both parents to be carriers. In contrast, a previously reported case with the same variant had polyhydramnios, complex facial abnormalities and bright echogenic brain parenchyma with oval shaped skull and anterior flattening at 26 weeks of gestation. CONCLUSION: The variant identified has been previously reported as a VUS. The present case provides further evidence towards the pathogenicity of the variant. A plausible genotype-phenotype correlation based on the location of the variant has been verified, wherein the position of a nonsense variant in the terminal exon of FAM20C gene, could have had a partial effect on the protein function, thereby resulting in a relatively milder phenotype and extended lifespan. Furthermore, the vast phenotypic variation on clinical comparison current case and a previously reported case, despite having the same genotype, could suggest an oligogenic effect and/ or environmental influence.


Assuntos
Caseína Quinase I , Osteosclerose , Anormalidades Múltiplas , Caseína Quinase I/genética , Criança , Fissura Palatina , Exoftalmia , Proteínas da Matriz Extracelular/genética , Feminino , Estudos de Associação Genética , Humanos , Recém-Nascido , Microcefalia , Osteosclerose/diagnóstico por imagem , Osteosclerose/genética , Fenótipo , Gravidez
9.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360805

RESUMO

FAM20C is a gene coding for a protein kinase that targets S-X-E/pS motifs on different phosphoproteins belonging to diverse tissues. Pathogenic variants of FAM20C are responsible for Raine syndrome (RS), initially described as a lethal and congenital osteosclerotic dysplasia characterized by generalized atherosclerosis with periosteal bone formation, characteristic facial dysmorphisms and intracerebral calcifications. The aim of this review is to give an overview of targets and variants of FAM20C as well as RS aspects. We performed a wide phenotypic review focusing on clinical aspects and differences between all lethal (LRS) and non-lethal (NLRS) reported cases, besides the FAM20C pathogenic variant description for each. As new targets of FAM20C kinase have been identified, we reviewed FAM20C targets and their functions in bone and other tissues, with emphasis on novel targets not previously considered. We found the classic lethal and milder non-lethal phenotypes. The milder phenotype is defined by a large spectrum ranging from osteonecrosis to osteosclerosis with additional congenital defects or intellectual disability in some cases. We discuss our current understanding of FAM20C deficiency, its mechanism in RS through classic FAM20C targets in bone tissue and its potential biological relevance through novel targets in non-bone tissues.


Assuntos
Anormalidades Múltiplas , Caseína Quinase I , Fissura Palatina , Exoftalmia , Proteínas da Matriz Extracelular , Variação Genética , Microcefalia , Osteosclerose , Fenótipo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/mortalidade , Anormalidades Múltiplas/patologia , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Fissura Palatina/genética , Fissura Palatina/metabolismo , Fissura Palatina/mortalidade , Fissura Palatina/patologia , Exoftalmia/genética , Exoftalmia/metabolismo , Exoftalmia/mortalidade , Exoftalmia/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/mortalidade , Microcefalia/patologia , Osteosclerose/genética , Osteosclerose/metabolismo , Osteosclerose/mortalidade , Osteosclerose/patologia
10.
J Cell Biochem ; 121(12): 4809-4818, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32115754

RESUMO

Osteopontin (OPN) is a ubiquitously expressed, multifunctional, and highly phosphorylated protein. OPN contains two neighboring integrin-binding motifs, RGD and SVVYGLR, which mediate interaction with cells. Phosphorylation and proteolytic processing affect the integrin-binding activities of OPN. Here we report that the kinase, FAM20C, phosphorylates Ser146 in the 143 RGDSVVYGLR152 motif of OPN and that Ser146 is phosphorylated in vivo in human and bovine milk. Ser146 is located right next to the RGD motif and close by the regulatory thrombin and plasmin cleavage sites in the OPN sequence. Phosphorylation of Ser146 could potentially affect the proteolytic processing and the integrin-binding activities of OPN. We show that phosphorylation of Ser146 does not affect the susceptibility of OPN for thrombin or plasmin cleavage. However, phosphorylation of Ser146 significantly reduces the RGD-mediated interaction with the αv ß3 integrin in MDA-MB-435 and Moαv cells. This suggests a new mechanism by which specific phosphorylation of OPN can regulate interaction with the αv ß3 integrin and thereby affect OPN-cell interaction.

11.
Calcif Tissue Int ; 107(1): 96-103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32337609

RESUMO

Raine Syndrome (RS) is caused by biallelic loss-of-function mutations in FAM20C gene and characterized by hypophosphatemia, typical facial and skeletal features. Subperiosteal bone formation and generalized osteosclerosis are the most common radiological findings. Here we present a new case with RS. A 9-month-old male patient on a home-type ventilator was referred for hypophosphatemia. He was born with a weight of 3800 g to non-consanguineous parents. Prenatal ultrasound had demonstrated nasal bone agenesis. A large anterior fontanel, frontal bossing, exophthalmos, hypoplastic nose, high arched palate, low set ears, triangular mouth, and corneal opacification were detected on physical examination. Serial skeletal X-rays revealed diffuse osteosclerosis at birth which was gradually decreased by the age of 5 months with subperiosteal undermineralized bone formation and medullary space of long bone could be distinguishable with bone-within-a-bone appearance. At 9 months of age, hand X-ray revealed cupping of the ulna with loose radial bone margin with minimal fraying and osteopenia. Cranial computed tomography scan showed bilateral periventricular calcification and hydrocephalus in progress. The clinical, laboratory, and radiological examinations were consistent with RS. Molecular analyses revealed a compound heterozygous mutation in FAM20C gene (a known pathogenic mutation, c.1645C > T, p.Arg549Trp; and a novel c.863 + 5 G > C variant). The patient died due to respiratory failure at 17 months of age. This case allowed us to demonstrate natural progression of skeletal features in RS. Furthermore, we have described a novel FAM20C variant causing RS. Previous literature on RS is also reviewed.


Assuntos
Fissura Palatina/complicações , Exoftalmia/complicações , Hipofosfatemia/etiologia , Microcefalia/complicações , Osteosclerose/complicações , Anormalidades Múltiplas , Caseína Quinase I/genética , Proteínas da Matriz Extracelular/genética , Humanos , Lactente , Masculino
12.
Proc Natl Acad Sci U S A ; 114(34): 9098-9103, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784772

RESUMO

Precise Ca cycling through the sarcoplasmic reticulum (SR), a Ca storage organelle, is critical for proper cardiac muscle function. This cycling initially involves SR release of Ca via the ryanodine receptor, which is regulated by its interacting proteins junctin and triadin. The sarco/endoplasmic reticulum Ca ATPase (SERCA) pump then refills SR Ca stores. Histidine-rich Ca-binding protein (HRC) resides in the lumen of the SR, where it contributes to the regulation of Ca cycling by protecting stressed or failing hearts. The common Ser96Ala human genetic variant of HRC strongly correlates with life-threatening ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. However, the underlying molecular pathways of this disease remain undefined. Here, we demonstrate that family with sequence similarity 20C (Fam20C), a recently characterized protein kinase in the secretory pathway, phosphorylates HRC on Ser96. HRC Ser96 phosphorylation was confirmed in cells and human hearts. Furthermore, a Ser96Asp HRC variant, which mimics constitutive phosphorylation of Ser96, diminished delayed aftercontractions in HRC null cardiac myocytes. This HRC phosphomimetic variant was also able to rescue the aftercontractions elicited by the Ser96Ala variant, demonstrating that phosphorylation of Ser96 is critical for the cardioprotective function of HRC. Phosphorylation of HRC on Ser96 regulated the interactions of HRC with both triadin and SERCA2a, suggesting a unique mechanism for regulation of SR Ca homeostasis. This demonstration of the role of Fam20C-dependent phosphorylation in heart disease will open new avenues for potential therapeutic approaches against arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Sequência de Aminoácidos , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Proteínas de Ligação ao Cálcio/genética , Caseína Quinase I/genética , Linhagem Celular Tumoral , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Serina/genética , Serina/metabolismo
13.
IUBMB Life ; 71(6): 749-759, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30941842

RESUMO

Previous decades have seen an explosion in our understanding of protein kinase function in human health and disease. Hundreds of unique kinase structures have been solved, allowing us to create generalized rules for catalysis, assign roles of communities within the catalytic core, and develop specific drugs for targeting various pathways. Although our understanding of intracellular kinases has developed at a fast rate, our exploration into extracellular kinases has just begun. In this review, we will cover the secreted protein kinase families found in humans, bacteria, and parasites. © 2019 IUBMB Life, 71(6):749-759, 2019.


Assuntos
Transporte Biológico/genética , Fosforilação/genética , Proteínas Quinases/genética , Animais , Bactérias/enzimologia , Humanos , Mamíferos/genética , Parasitos/enzimologia , Proteínas Quinases/classificação , Especificidade por Substrato
14.
Osteoporos Int ; 30(3): 685-689, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30151622

RESUMO

Raine syndrome is characterized by FGF23-mediated hypophosphatemic osteomalacia with osteosclerosis caused by mutations in the FAM20C gene. We report a case of a 72-year-old man who presented with rapid progressive spontaneous osteonecrosis of the knee (SONK). A full osteologic assessment including dual energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and serum analyses revealed a high bone mass in the lumbar spine and hip (DXA T-score + 7.5 and + 4.7/+4.2) with increased bone microstructural parameters in the distal radius and tibia (BV/TV 127%, 140% of the age-matched mean, respectively), as well as a low bone turnover state. Phosphate levels were low due to renal phosphate wasting and high FGF23 levels (126.5 pg/ml, reference range 23.2-95.4 pg/ml). Using gene panel sequencing, we identified a novel FAM20C heterozygous missense mutation in combination with a homozygous duplication that potentially alters splicing. Taken together, this is the first case of mild Raine syndrome with spontaneous osteonecrosis of the knee, phosphate wasting, and a pronounced trabecular high bone mass phenotype.


Assuntos
Anormalidades Múltiplas/genética , Caseína Quinase I/genética , Fissura Palatina/genética , Exoftalmia/genética , Proteínas da Matriz Extracelular/genética , Articulação do Joelho/patologia , Microcefalia/genética , Mutação de Sentido Incorreto , Osteonecrose/genética , Osteosclerose/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/fisiopatologia , Idoso , Densidade Óssea , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/fisiopatologia , Exoftalmia/diagnóstico por imagem , Exoftalmia/fisiopatologia , Fator de Crescimento de Fibroblastos 23 , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Osteonecrose/diagnóstico por imagem , Osteonecrose/fisiopatologia , Osteosclerose/diagnóstico por imagem , Osteosclerose/fisiopatologia , Radiografia
15.
Calcif Tissue Int ; 105(5): 567-572, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471673

RESUMO

Raine syndrome is a rare hereditary disease caused by mutations in the FAM20C gene. Only 18 non-lethal cases have been reported, the majority of them being children and young adults aged up to 30. Due to the rarity of the disease, genotype-phenotype correlations are not available and patient life expectancy is unknown, thus making descriptions of each novel case of particular importance. In this article, we describe a case of an Armenian woman, living in Russia, who was followed-up from age 36 to 39, presenting with pain in the extremities, osteosclerosis with periosteal bone formation, multiple calcifications in solid organs, midface hypoplasia, exophthalmos, amelogenesis imperfecta, shortening of distal phalanges, pectus excavatum, and hypophosphatemia due to renal phosphate wasting. Whole exome sequencing was performed on NextSeq 550 (Illumina, USA) and compound heterozygous variants were identified in the FAM20C gene (reference sequence NM_020223): a frameshift insertion c.1107_1108insTACTG (p.Tyr369fs) and a missense substitution c.1375C > G (p.Arg459Gly). This is the first reported case of a middle-aged patient presenting classical symptoms of Raine syndrome caused by novel compound heterozygous mutations in the conserved C-terminal domain of FAM20C gene.


Assuntos
Anormalidades Múltiplas/genética , Caseína Quinase I/genética , Fissura Palatina/genética , Exoftalmia/genética , Proteínas da Matriz Extracelular/genética , Microcefalia/genética , Osteosclerose/genética , Adulto , Feminino , Estudos de Associação Genética , Humanos , Mutação
16.
Am J Med Genet A ; 179(9): 1866-1871, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31297960

RESUMO

Raine syndrome is a rare, autosomal recessive, osteosclerotic bone dysplasia due to pathogenic variants in FAM20C. The clinical phenotype is characterized by generalized osteosclerosis affecting all bones, cerebral calcifications, and craniofacial dysmorphism. Most cases present during the neonatal period with early lethality due to pulmonary hypoplasia and respiratory compromise while only few affected individuals have been reported to survive into adulthood. FAM20C is a ubiquitously expressed protein kinase that contains five functional domains including a catalytic domain, a binding pocket for FAM20A and three distinct N-glycosylation sites. We report a newborn infant with a history of prenatal onset fractures, generalized osteosclerosis, and craniofacial dysmorphism and early lethality. The clinical presentation was highly suggestive of Raine syndrome. A homozygous, novel missense variant in exon 5 of FAM20C (c.1007T>G; p.Met336Arg) was identified by targeted Sanger sequencing. Following in silico analysis and mapping of the variant on a three-dimensional (3D) model of FAM20C it is predicted to be deleterious and to affect N-glycosylation, protein folding, and subsequent secretion of FAM20C. In addition, we reviewed all published FAM20C mutations and observed that most pathogenic variants affect functional regions within the protein establishing evidence for an emerging genotype-phenotype correlation.


Assuntos
Anormalidades Múltiplas/genética , Caseína Quinase I/genética , Fissura Palatina/genética , Anormalidades Craniofaciais/genética , Exoftalmia/genética , Proteínas da Matriz Extracelular/genética , Microcefalia/genética , Osteosclerose/genética , Anormalidades Múltiplas/fisiopatologia , Adulto , Caseína Quinase I/ultraestrutura , Domínio Catalítico/genética , Fissura Palatina/fisiopatologia , Anormalidades Craniofaciais/fisiopatologia , Exoftalmia/fisiopatologia , Proteínas da Matriz Extracelular/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicosilação , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/fisiopatologia , Mutação de Sentido Incorreto/genética , Osteosclerose/fisiopatologia , Fenótipo , Ligação Proteica/genética , Dobramento de Proteína , Relação Estrutura-Atividade
17.
Cells Tissues Organs ; 208(1-2): 25-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32101876

RESUMO

FAM20C (family with sequence similarity 20 - member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. Previously, we reported that inactivation of Fam20c in mice led to hypophosphatemic rickets/osteomalacia along with increased circulating fibroblast growth factor 23 (FGF23) levels and dental defects. In this study, we examined whether a high-phosphate (hPi) diet could rescue the skeletal defects in Fam20c-deficient mice. Fam20c conditional knockout (cKO) mice were generated by crossing female Fam20c-floxed mice (Fam20cfl/fl) with male Sox2-Cre;Fam20cfl/+ mice. The pregnant female Fam20cfi/fl mice were fed either a normal or hPi diet until the litters were weaned. The cKO and control offspring were continuously given a normal or hPi diet for 4 weeks after weaning. Plain X-ray radiography, micro-CT, histology, immunohistochemistry (FGF23, DMP1, OPN, and SOX9), and in situ hybridization (type II and type X collagen) analyses were performed to evaluate the effects of an hPi diet on the mouse skeleton. Plain X-ray radiography and micro-CT radiography analyses showed that the hPi diet improved the shape and mineral density of the Fam20c-deficient femurs/tibiae, and rescued the growth plate defects in the long bone. Histology analyses further demonstrated that an hPi diet nearly completely rescued the growth plate-widening defects in the long bone and restored the expanded hypertrophic zone to nearly normal width. These results suggested that the hPi diet significantly improved the skeletal development of the Fam20c-deficient mice, implying that hypophosphatemia partially contributed to the skeletal defects in Fam20c-deficient subjects.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/embriologia , Hipofosfatemia , Fosfatos/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Proteínas de Ligação ao Cálcio/genética , Dieta , Proteínas da Matriz Extracelular/genética , Fator de Crescimento de Fibroblastos 23 , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/embriologia , Lâmina de Crescimento/patologia , Hipofosfatemia/tratamento farmacológico , Hipofosfatemia/genética , Camundongos , Camundongos Knockout , Fosfatos/metabolismo , Fatores de Transcrição SOXB1/genética
18.
Exp Cell Res ; 363(2): 188-195, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29337188

RESUMO

FAM20C mutations compromise the mineralization of skeleton and tooth in both human and mouse. Putatively, the mineralization disorder is attributed to the elevated fibroblast growth factor 23 (FGF23), which reduced the serum phosphorus by suppressing the reabsorption of phosphorus in kidney. Besides the regulation on systemic phosphorus homeostasis, FAM20C was also implicated to regulate cell behaviors and gene expression through a cell-autonomous manner. To identify the primary effects of Fam20c on dental mesenchymal cells, mouse Fam20c-deficient dental mesenchymal cells were generated by removing the floxed alleles from the immortalized mouse Fam20cf/f dental mesenchymal cells with Cre-expressing lentivirus. The removal of Fam20c exerted no impact on cell morphology, but suppressed the proliferation and mobility of the dental mesenchymal cells. Fam20c deficiency also significantly reduced the expression of Osterix, Runx2, type I Collagen a 1 (Col1a1), Alkaline phosphatase (Alpl) and the members of the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, but increased Fgf23 expression. Consistently, the in vitro mineralization of Fam20c-deficient dental mesenchymal cells was severely disabled. However, supplements of the non-collagenous proteins from wild type rat dentin failed to rescue the compromised mineralization, suggesting that the roles of FAM20C in tooth mineralization are more than phosphorylating local matrices and regulating systemic phosphorus metabolism. Moreover, the down-regulated BMP signaling pathways in the Fam20c deficient dental mesenchymal cells revealed that the kinase activity of FAM20C might be required to maintain BMP signaling. In summary, our study discloses that Fam20c indeed regulates cell behaviors and cell signaling pathway in a cell-autonomous manner.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Odontoblastos/citologia , Calcificação de Dente/fisiologia , Animais , Calcificação Fisiológica/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Fator de Crescimento de Fibroblastos 23 , Camundongos , Dente/metabolismo
19.
J Cell Physiol ; 233(4): 3476-3486, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28926103

RESUMO

Recent studies indicate that Family with sequence similarity 20 member C (FAM20C) catalyzes the phosphorylation of secreted proteins, and participates in a variety of biological processes, including cell proliferation, migration, mineralization, and phosphate homeostasis. To explore the local influences of FAM20C on osteoblast, Fam20c-deficient osteoblasts were generated by treating the immortalized Fam20cf/f osteoblasts with CMV-Cre-IRES-EGFP lentivirus. Compared with the normal Fam20cf/f osteoblasts, the expression of Bone sialoprotein (Bsp), Osteocalcin (Ocn), Fibroblast growth factor 23 (Fgf23), and transcription factors that promote osteoblast maturation were up-regulated in the Fam20c-deficient osteoblasts. In contrast, the expression of Dental matrix protein 1 (Dmp1), Dentin sialophosphoprotein (Dspp), Osteopontin (Opn), type I Collagen a 1 (Col1a1), and Alkine phosphatase (Alp) were down-regulated in the Fam20c-deficient cells. These alterations disclosed the primary regulation of Fam20c on gene expression. The Fam20c-deficient osteoblasts showed a remarkable reduction in the ability of forming mineralized nodules. However, supplements of extracellular matrix proteins extracted from the normal bone failed to rescue the reduced mineralization, suggesting that FAM20C may affect the biomineralization by the means more than local phosphorylation of extracellular matrix proteins and systemic phosphorus homeostasis. Moreover, although Fam20c deficiency had little impact on cell proliferation, it significantly reduced cell migration and lowered the levels of p-Smad1/5/8, p-Erk and p-p38, suggesting that the kinase activity of FAM20C might be essential to cell mobility and the activity of BMP ligands. In summary, these findings provide evidences that FAM20C may regulate osteoblast maturation, migration, mineralization, and BMP signaling pathways in a cell-autonomous manner.


Assuntos
Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Calcificação Fisiológica/genética , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Fator de Crescimento de Fibroblastos 23 , Homeostase/fisiologia , Humanos , Osteocalcina/metabolismo
20.
BMC Med Genet ; 19(1): 76, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751744

RESUMO

BACKGROUND: Raine syndrome (RS) - an extremely rare autosomal recessive genetic disorder, is caused by a biallelic mutation in the FAM20C gene. Some of the most common clinical features include generalized osteosclerosis with a periosteal bone formation, dysmorphic face, and thoracic hypoplasia. Many cases have also been reported with oro-dental abnormalities, and developmental delay. Most of the cases result in neonatal death. However, a few non-lethal RS cases have been reported where patients survive till adulthood and exhibits a heterogeneous clinical phenotype. Clinical diagnosis of RS has been done through facial appearance and radiological findings, while confirmatory diagnosis has been conducted through a molecular study of the FAM20C gene. CASE PRESENTATION: A 6-year-old girl was born to healthy third degree consanguineous parents. She presented with facial dysmorphy, delayed speech, and delayed cognition. Radiography showed small sclerotic areas in the lower part of the right femur, and an abnormally-shaped skull with minimal sclerosis in the lower occipital region. Computer tomography scan of the brain revealed mild cortical atrophy, and MRI scan of the brain showed corpus callosal dysgenesis with the absence of the rostral area. Chromosome banding at 500 band resolution showed a normal female karyotype. No quantitative genomic imbalance was detected by aCGH. Further study conducted using Clinical Exome Sequencing identified a homozygous missense variation c.1228 T > A (p.Ser410Thr) in the exon 6 of FAM20C gene - a likely pathogenic variant that confirmed the clinical diagnosis of RS. The variant was confirmed in the proband and her parents using Sanger sequencing. Prenatal diagnosis during subsequent pregnancy revealed heterozygous status of the fetus, and a normal carrier child was delivered at term. CONCLUSIONS: The syndrome revealed markedly variable presentations such as facial dysmorphy and developmental delay, and was localized to diffuse bone osteosclerosis. Clinical indications, striking radiological findings and molecular testing of FAM20C gene confirmed the diagnosis of RS. A rarity of the disorder and inconsistent phenotype hindered the establishment of genotype-phenotype correlations in RS. Therefore, reporting more cases and conducting further research would be crucial in defining the variable radiologic and molecular defects of the lethal and non-lethal forms of this syndrome.


Assuntos
Anormalidades Múltiplas/diagnóstico por imagem , Caseína Quinase I/genética , Fissura Palatina/diagnóstico por imagem , Exoftalmia/diagnóstico por imagem , Proteínas da Matriz Extracelular/genética , Microcefalia/diagnóstico por imagem , Mutação de Sentido Incorreto , Osteosclerose/diagnóstico por imagem , Análise de Sequência de DNA/métodos , Anormalidades Múltiplas/genética , Criança , Bandeamento Cromossômico , Fissura Palatina/genética , Exoftalmia/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Microcefalia/genética , Osteosclerose/genética , Pais , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA