Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.187
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428422

RESUMO

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Assuntos
Inflamação , Interleucina-10 , Mielopoese , Animais , Camundongos , Gravidez/imunologia , Feto , Hematopoese , Células-Tronco Hematopoéticas/citologia , Inflamação/imunologia , Interleucina-10/imunologia , Animais Recém-Nascidos , Feminino
2.
Cell ; 170(2): 273-283.e12, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708997

RESUMO

The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.


Assuntos
Vacinas Virais/administração & dosagem , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/fisiologia , Aedes/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Sanguíneas/virologia , Embrião de Mamíferos/virologia , Feminino , Feto/virologia , Humanos , Lipídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Organismos Livres de Patógenos Específicos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/virologia
3.
Cell ; 169(1): 161-173.e12, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340341

RESUMO

Generating a precise cellular and molecular cartography of the human embryo is essential to our understanding of the mechanisms of organogenesis in normal and pathological conditions. Here, we have combined whole-mount immunostaining, 3DISCO clearing, and light-sheet imaging to start building a 3D cellular map of the human development during the first trimester of gestation. We provide high-resolution 3D images of the developing peripheral nervous, muscular, vascular, cardiopulmonary, and urogenital systems. We found that the adult-like pattern of skin innervation is established before the end of the first trimester, showing important intra- and inter-individual variations in nerve branches. We also present evidence for a differential vascularization of the male and female genital tracts concomitant with sex determination. This work paves the way for a cellular and molecular reference atlas of human cells, which will be of paramount importance to understanding human development in health and disease. PAPERCLIP.


Assuntos
Embrião de Mamíferos/citologia , Feto/citologia , Desenvolvimento Humano , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Microscopia/métodos , Desenvolvimento Embrionário , Humanos , Organogênese , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/crescimento & desenvolvimento
4.
Immunol Rev ; 315(1): 89-107, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36625367

RESUMO

While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Humanos , Animais , Camundongos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Timo , Timócitos , Diferenciação Celular
5.
Immunol Rev ; 308(1): 25-39, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643905

RESUMO

Reproductive physiology and immunology as scientific disciplines each have rich, largely independent histories. The physicians and philosophers of ancient Greece made remarkable observations and inferences to explain regeneration as well as illness and immunity. The scientific enlightenment of the renaissance and the technological advances of the past century have led to the explosion of knowledge that we are experiencing today. Breakthroughs in transplantation, immunology, and reproduction eventually culminated with Medawar's discovery of acquired immunological tolerance, which helped to explain the transplantation success and failure. Medawar's musings also keenly pointed out that the fetus apparently breaks these newly discovered rules, and with this, the field of reproductive immunology was launched. As a result of having stemmed from transplantation immunology, scientist still analogizes the fetus to a successful allograft. Although we now know of the fundamental differences between the two, this analogy remains a useful tool to understand how the fetus thrives despite its immunological disparity with the mother. Here, we review the history of reproductive immunology, and how major and minor histocompatibility antigens, blood group antigens, and tissue-specific "self" antigens from the fetus and transplanted organs parallel and differ.


Assuntos
Antígenos , Placenta , Feminino , Feto , Humanos , Sistema Imunitário , Tolerância Imunológica , Gravidez
6.
Circulation ; 149(10): e937-e952, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314551

RESUMO

Disorders of the cardiac rhythm may occur in both the fetus and neonate. Because of the immature myocardium, the hemodynamic consequences of either bradyarrhythmias or tachyarrhythmias may be far more significant than in mature physiological states. Treatment options are limited in the fetus and neonate because of limited vascular access, patient size, and the significant risk/benefit ratio of any intervention. In addition, exposure of the fetus or neonate to either persistent arrhythmias or antiarrhythmic medications may have yet-to-be-determined long-term developmental consequences. This scientific statement discusses the mechanism of arrhythmias, pharmacological treatment options, and distinct aspects of pharmacokinetics for the fetus and neonate. From the available current data, subjects of apparent consistency/consensus are presented, as well as future directions for research in terms of aspects of care for which evidence has not been established.


Assuntos
American Heart Association , Arritmias Cardíacas , Recém-Nascido , Estados Unidos , Criança , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/tratamento farmacológico , Taquicardia , Feto , Eletrofisiologia
7.
Annu Rev Nutr ; 44(1): 313-337, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38724030

RESUMO

The dietary choices a mother makes during pregnancy offer her developing fetus its earliest exposure to the family's culinary preferences. This comprehensive literature review synthesizes five decades of research, which has provided valuable insights into fetal flavor learning. Converging evidence across various species supports the functionality of fetal chemoreceptive systems by the end of gestation, enabling the detection of an extensive array of chemosensory cues derived from the maternal diet and transmitted to the amniotic fluid. The fetus effectively encodes these flavors, resulting in their enhanced acceptance after birth. While existing studies predominantly concentrate on fetal learning about odor volatiles, limited evidence suggests a capacity for learning about gustatory (i.e., taste) properties. Examining whether these prenatal odor, taste, and flavor experiences translate into enduring shifts in dietary behaviors beyond weaning remains a crucial avenue for further investigation.


Assuntos
Dieta , Preferências Alimentares , Odorantes , Paladar , Humanos , Feminino , Gravidez , Paladar/fisiologia , Preferências Alimentares/fisiologia , Lactente , Fenômenos Fisiológicos da Nutrição Materna , Animais
8.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517172

RESUMO

The fetal period is a critical stage in brain development, and understanding the characteristics of the fetal brain is crucial. Although some studies have explored aspects of fetal brain functional networks, few have specifically focused on sex differences in brain network characteristics. We adopted the graph theory method to calculate brain network functional connectivity and topology properties (including global and nodal properties), and further compared the differences in these parameters between male and female fetuses. We found that male fetuses showed an increased clustering coefficient and local efficiency than female fetuses, but no significant group differences concerning other graph parameters and the functional connectivity matrix. Our study suggests the existence of sex-related distinctions in the topological properties of the brain network at the fetal stage of development and demonstrates an increase in brain network separation in male fetuses compared with female fetuses.


Assuntos
Imageamento por Ressonância Magnética , Caracteres Sexuais , Masculino , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Análise por Conglomerados
9.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38365268

RESUMO

Cleft lip/palate is a common orofacial malformation that often leads to speech/language difficulties as well as developmental delays in affected children, despite surgical repair. Our understanding of brain development in these children is limited. This study aimed to analyze prenatal brain development in fetuses with cleft lip/palate and controls. We examined in utero MRIs of 30 controls and 42 cleft lip/palate fetal cases and measured regional brain volumes. Cleft lip/palate was categorized into groups A (cleft lip or alveolus) and B (any combination of clefts involving the primary and secondary palates). Using a repeated-measures regression model with relative brain hemisphere volumes (%), and after adjusting for multiple comparisons, we did not identify significant differences in regional brain growth between group A and controls. Group B clefts had significantly slower weekly cerebellar growth compared with controls. We also observed divergent brain growth in transient brain structures (cortical plate, subplate, ganglionic eminence) within group B clefts, depending on severity (unilateral or bilateral) and defect location (hemisphere ipsilateral or contralateral to the defect). Further research is needed to explore the association between regional fetal brain growth and cleft lip/palate severity, with the potential to inform early neurodevelopmental biomarkers and personalized diagnostics.


Assuntos
Fenda Labial , Fissura Palatina , Feminino , Criança , Gravidez , Humanos , Fenda Labial/diagnóstico por imagem , Fenda Labial/cirurgia , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/anormalidades , Feto
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602735

RESUMO

Developmental changes that occur before birth are thought to be associated with the development of autism spectrum disorders. Identifying anatomical predictors of early brain development may contribute to our understanding of the neurobiology of autism spectrum disorders and allow for earlier and more effective identification and treatment of autism spectrum disorders. In this study, we used retrospective clinical brain magnetic resonance imaging data from fetuses who were diagnosed with autism spectrum disorders later in life (prospective autism spectrum disorders) in order to identify the earliest magnetic resonance imaging-based regional volumetric biomarkers. Our results showed that magnetic resonance imaging-based autism spectrum disorder biomarkers can be found as early as in the fetal period and suggested that the increased volume of the insular cortex may be the most promising magnetic resonance imaging-based fetal biomarker for the future emergence of autism spectrum disorders, along with some additional, potentially useful changes in regional volumes and hemispheric asymmetries.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Biomarcadores
11.
Semin Cell Dev Biol ; 131: 66-77, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35393235

RESUMO

The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.


Assuntos
Placenta , Placentação , Animais , Feminino , Desenvolvimento Fetal , Humanos , Troca Materno-Fetal , Oxigênio , Gravidez
12.
J Physiol ; 602(15): 3815-3832, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975864

RESUMO

Fetal growth restriction (FGR) occurs in 8% of human pregnancies, and the growth restricted newborn is at a greater risk of developing heart disease in later adult life. In sheep, experimental restriction of placental growth (PR) from conception results in FGR, a decrease in cardiomyocyte endowment and an upregulation of pathological hypertrophic signalling in the fetal heart in late gestation. However, there is no change in the expression of markers of cellular proliferation nor in the level of cardiomyocyte apoptosis in the heart of the PR fetus in late gestation. This suggests that FGR arises early in gestation and programs a decrease in cardiomyocyte endowment in early, rather than late, gestation. Here, control and PR fetal sheep were humanely killed at 55 days' gestation (term, 150 days). Fetal body and heart weight were lower in PR compared with control fetuses and there was evidence of sparing of fetal brain growth. While there was no change in the proportion of cardiomyocytes that were proliferating in the early gestation PR heart, there was an increase in measures of apoptosis, and markers of autophagy and pathological hypertrophy in the PR fetal heart. These changes in early gestation highlight that FGR is associated with evidence of early cell death and compensatory hypertrophic responses of cardiomyocytes in the fetal heart. The data suggest that early placental restriction results in a decrease in the pool of proliferative cardiomyocytes in early gestation, which would limit cardiomyocyte endowment in the heart of the PR fetus in late gestation. KEY POINTS: Placental restriction leading to fetal growth restriction (FGR) and chronic fetal hypoxaemia in sheep results in a decrease in cardiomyocyte endowment in late gestation. FGR did not change cardiomyocyte proliferation during early gestation but did result in increased apoptosis and markers of autophagy in the fetal heart, which may result in the decreased endowment of cardiomyocytes observed in late gestation. FGR in early gestation also results in increased hypoxia inducible factor signalling in the fetal heart, which in turn may result in the altered expression of epigenetic regulators, increased expression of insulin-like growth factor 2 and cardiomyocyte hypertrophy during late gestation and after birth.


Assuntos
Apoptose , Retardo do Crescimento Fetal , Miócitos Cardíacos , Animais , Gravidez , Feminino , Ovinos , Retardo do Crescimento Fetal/fisiopatologia , Retardo do Crescimento Fetal/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/patologia , Coração Fetal/metabolismo , Placenta/metabolismo , Desenvolvimento Fetal/fisiologia , Autofagia/fisiologia , Proliferação de Células , Coração/embriologia
13.
Proteins ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246239

RESUMO

Aminoglycoside antibiotics have played a critical role in the treatment of both Gram-negative and Gram-positive bacterial infections. However, antibiotic resistance has severely compromised the efficacy of aminoglycosides. A leading cause of aminoglycoside resistance is mediated by bacterial enzymes that inactivate these drugs via chemical modification. Aminoglycoside nucleotidyltransferase-6 (ANT(6)) enzymes inactivate streptomycin by transferring an adenyl group from ATP to position 6 on the antibiotic. Despite the clinical significance of this activity, ANT(6) enzymes remain relatively uncharacterized. Here, we report the first high resolution x-ray crystallographic structure of ANT(6)-Ib from Campylobacter fetus subsp. fetus bound with streptomycin. Structural modeling and gel filtration chromatography experiments suggest that the enzyme exists as a dimer in which both subunits contribute to the active site. Moreover, superposition of the ANT(6)-Ib structure with the structurally related enzyme lincosamide nucleotidyltransferase B (LinB) permitted the identification of a putative nucleotide binding site. These data also suggest that residues D44 and D46 coordinate essential divalent metal ions and D102 functions as the catalytic base.

14.
Circulation ; 147(12): 956-972, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484244

RESUMO

BACKGROUND: Placental heart development and embryonic heart development occur in parallel, and these organs have been proposed to exert reciprocal regulation during gestation. Poor placentation has been associated with congenital heart disease, an important cause of infant mortality. However, the mechanisms by which altered placental development can lead to congenital heart disease remain unresolved. METHODS: In this study, we use an in vivo neutrophil-driven placental inflammation model through antibody depletion of maternal circulating neutrophils at key stages during time-mated murine pregnancy: embryonic days 4.5 and 7.5. Pregnant mice were culled at embryonic day 14.5 to assess placental and embryonic heart development. A combination of flow cytometry, histology, and bulk RNA sequencing was used to assess placental immune cell composition and tissue architecture. We also used flow cytometry and single-cell sequencing to assess embryonic cardiac immune cells at embryonic day 14.5 and histology and gene analyses to investigate embryonic heart structure and development. In some cases, offspring were culled at postnatal days 5 and 28 to assess any postnatal cardiac changes in immune cells, structure, and cardiac function, as measured by echocardiography. RESULTS: In the present study, we show that neutrophil-driven placental inflammation leads to inadequate placental development and loss of barrier function. Consequently, placental inflammatory monocytes of maternal origin become capable of migration to the embryonic heart and alter the normal composition of resident cardiac macrophages and cardiac tissue structure. This cardiac impairment continues into postnatal life, hindering normal tissue architecture and function. Last, we show that tempering placental inflammation can prevent this fetal cardiac defect and is sufficient to promote normal cardiac function in postnatal life. CONCLUSIONS: Taken together, these observations provide a mechanistic paradigm whereby neutrophil-driven inflammation in pregnancy can preclude normal embryonic heart development as a direct consequence of poor placental development, which has major implications on cardiac function into adult life.


Assuntos
Cardiopatias Congênitas , Placenta , Gravidez , Feminino , Camundongos , Animais , Placenta/patologia , Placentação , Feto , Inflamação/patologia
15.
Clin Infect Dis ; 78(Suppl 1): S47-S54, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294114

RESUMO

BACKGROUND: Tularemia is caused by the gram-negative bacterium Francisella tularensis. Although rare, tularemia during pregnancy has been associated with pregnancy complications; data on efficacy of recommended antimicrobials for treatment are limited. We performed a systematic literature review to characterize clinical manifestations of tularemia during pregnancy and examine maternal, fetal, and neonatal outcomes with and without antimicrobial treatment. METHODS: We searched 9 databases, including Medline, Embase, Global Health, and PubMed Central, using terms related to tularemia and pregnancy. Articles reporting cases of tularemia with ≥1 maternal or fetal outcome were included. RESULTS: Of 5891 articles identified, 30 articles describing 52 cases of tularemia in pregnant patients met inclusion criteria. Cases were reported from 9 countries, and oropharyngeal and ulceroglandular tularemia were the most common presenting forms. A plurality (46%) of infections occurred in the second trimester. Six complications were observed: lymph node aspiration, lymph node excision, maternal bleeding, spontaneous abortion, intrauterine fetal demise, and preterm birth. No deaths among mothers were reported. Of 28 patients who received antimicrobial treatment, 1 pregnancy loss and 1 fetal death were reported. Among 24 untreated patients, 1 pregnancy loss and 3 fetal deaths were reported, including one where F. tularensis was detected in placental and fetal tissues. CONCLUSIONS: Pregnancy loss and other complications have been reported among cases of tularemia during pregnancy. However, risk of adverse outcomes may be lower when antimicrobials known to be effective are used. Without treatment, transplacental transmission appears possible. These data underscore the importance of prompt recognition and treatment of tularemia during pregnancy.


Assuntos
Aborto Espontâneo , Anti-Infecciosos , Francisella tularensis , Nascimento Prematuro , Tularemia , Humanos , Feminino , Recém-Nascido , Gravidez , Tularemia/complicações , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Placenta , Anti-Infecciosos/uso terapêutico
16.
Physiology (Bethesda) ; 38(2): 0, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317939

RESUMO

Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.


Assuntos
Sistema Cardiovascular , Humanos , Animais , Vertebrados , Hipóxia , Coração/fisiologia
17.
Neuroimage ; 292: 120603, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588833

RESUMO

Fetal brain development is a complex process involving different stages of growth and organization which are crucial for the development of brain circuits and neural connections. Fetal atlases and labeled datasets are promising tools to investigate prenatal brain development. They support the identification of atypical brain patterns, providing insights into potential early signs of clinical conditions. In a nutshell, prenatal brain imaging and post-processing via modern tools are a cutting-edge field that will significantly contribute to the advancement of our understanding of fetal development. In this work, we first provide terminological clarification for specific terms (i.e., "brain template" and "brain atlas"), highlighting potentially misleading interpretations related to inconsistent use of terms in the literature. We discuss the major structures and neurodevelopmental milestones characterizing fetal brain ontogenesis. Our main contribution is the systematic review of 18 prenatal brain atlases and 3 datasets. We also tangentially focus on clinical, research, and ethical implications of prenatal neuroimaging.


Assuntos
Atlas como Assunto , Encéfalo , Imageamento por Ressonância Magnética , Neuroimagem , Feminino , Humanos , Gravidez , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Conjuntos de Dados como Assunto , Desenvolvimento Fetal/fisiologia , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
18.
Am J Physiol Renal Physiol ; 327(1): F21-F36, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695077

RESUMO

According to the Developmental Origins of Health and Disease hypothesis, exposure to certain environmental influences during early life may be a key determinant of fetal development and short- and long-term offspring health. Indeed, adverse conditions encountered during the fetal, perinatal, and early childhood stages can alter normal development and growth, as well as put the offspring at elevated risk of developing long-term health conditions in adulthood, including chronic kidney disease and cardiovascular diseases. Of relevance in understanding the mechanistic basis of these long-term health conditions are previous findings showing low glomerular number in human intrauterine growth restriction and low birth weight-indicators of a suboptimal intrauterine environment. In different animal models, the main suboptimal intrauterine conditions studied relate to maternal dietary manipulations, poor micronutrient intake, prenatal ethanol exposure, maternal diabetes, glucocorticoid and chemical exposure, hypoxia, and placental insufficiency. These studies have demonstrated changes in kidney structure, glomerular endowment, and expression of key genes and signaling pathways controlling endocrine, excretion, and filtration function of the offspring. This review aims to summarize those studies to uncover the effects and mechanisms by which adverse gestational environments impact offspring renal and vascular health in adulthood. This is important for identifying agents and interventions that can prevent and mitigate the long-term consequences of an adverse intrauterine environment on the subsequent generation.NEW & NOTEWORTHY Human data and experimental animal data show that suboptimal environments during fetal development increase the risk of renal and vascular diseases in adult-life. This is related to permanent changes in kidney structure, function, and expression of genes and signaling pathways controlling filtration, excretion, and endocrine function. Uncovering the mechanisms by which offspring renal development and function is impacted is important for identifying ways to mitigate the development of diseases that strain health care services worldwide.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Animais , Desenvolvimento Fetal , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Doenças Vasculares/metabolismo , Doenças Vasculares/etiologia , Fatores de Risco
19.
Br J Haematol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252551

RESUMO

Extension with cE-matching of the transfusion policy for women under 45 years to prevent alloimmunization and hemolytic disease of the foetus and newborn (HDFN) was evaluated. After implementation of cEK-matching, anti-c occurrence decreased from 46.8 to 30.4 per 100 000 pregnancies (RR 0.65, 95% CI 0.54-0.79), while anti-E occurrence decreased from 122.1 to 89.9 per 100 000 pregnancies (RR 0.74, 95% CI 0.66-0.84). The c-negative women showed a higher anti-E occurrence before cEK-matching and a more pronounced decline with the new policy. This indicates that cEK-matched transfusion effectively reduces alloimmunization, and that a cK-matched approach could prevent most transfusion-related alloimmunization and HDFN.

20.
BMC Med ; 22(1): 338, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183288

RESUMO

BACKGROUND: Antenatal steroid therapy for fetal lung maturation is routinely administered to women at risk of preterm delivery. There is strong evidence to demonstrate benefit from antenatal steroids in terms of survival and respiratory disease, notably in infants delivered at or below 32 weeks' gestation. However, dosing remains unoptimized and lung benefits are highly variable. Current treatment regimens generate high-concentration, pulsatile fetal steroid exposures now associated with increased risk of childhood neurodevelopmental diseases. We hypothesized that damage-associated changes in the fetal hippocampal transcriptome would be independent of preterm lung function. METHODS: Date-mated ewes carrying a single fetus at 122 ± 2dGA (term = 150dGA) were randomized into 4 groups: (i) Saline Control Group, 4×2ml maternal saline intramuscular(IM) injections at 12hr intervals (n = 11); or (ii) Dex High Group, 2×12mg maternal IM dexamethasone phosphate injections at 12hr intervals followed by 2×2ml IM saline injections at 12hr intervals (n = 12; representing a clinical regimen used in Singapore); or (iii) Dex Low Group, 4×1.5mg maternal IM dexamethasone phosphate injections 12hr intervals (n = 12); or (iv) Beta-Acetate Group, 1×0.125mg/kg maternal IM betamethasone acetate injection followed by 3×2ml IM sterile normal saline injections 12hr intervals (n = 8). Lambs were surgically delivered 48hr after first maternal injection at 122-125dGA, ventilated for 30min to establish lung function, and euthanised for necropsy and tissue collection. RESULTS: Preterm lambs from the Dex Low and Beta-Acetate Groups had statistically and biologically significant lung function improvements (measured by gas exchange, lung compliance). Compared to the Saline Control Group, hippocampal transcriptomic data identified 879 differentially significant expressed genes (at least 1.5-fold change and FDR < 5%) in the steroid-treated groups. Pulsatile dexamethasone-only exposed groups (Dex High and Dex Low) had three common positively enriched differentially expressed pathways related in part to neurodegeneration ("Prion Disease", "Alzheimer's Disease", "Arachidonic Acid metabolism"). Adverse changes were independent of respiratory function during ventilation. CONCLUSIONS: Our data suggests that exposure to antenatal steroid therapy is an independent cause of damage- associated transcriptomic changes in the brain of preterm, fetal sheep. These data highlight an urgent need for careful reconsideration and balancing of how antenatal steroids are used, both for patient selection and dosing regimens.


Assuntos
Hipocampo , Pulmão , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ovinos , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Gravidez , Dexametasona/farmacologia , Betametasona/administração & dosagem , Feto/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA