Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872078

RESUMO

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Assuntos
Acetatos , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Panax , Filogenia , Proteínas de Plantas , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Panax/genética , Panax/metabolismo , Panax/efeitos dos fármacos , Acetatos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Ginsenosídeos
2.
BMC Genomics ; 24(1): 673, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940838

RESUMO

BACKGROUND: Juglans sigillata L. (walnut) has a high economic value for nuts and wood and has been widely grown and eaten around the world. Light plays an important role in regulating the development of the walnut embryo and promoting nucleolus enlargement, which is one of the factors affecting the yield and quality of walnut. However, little is known about the effect of light on the growth and quality of walnuts. Studies have shown that far red prolonged hypocotyl 3 (FHY3) and far red damaged response (FAR1) play important roles in plant growth, light response, and resistance. Therefore, FHY3/FAR1 genes were identified in walnuts on a genome-wide basis during their growth and development to reveal the potential regulation mechanisms involved in walnut kernel growth and development. RESULTS: In the present study, a total of 61 FHY3/FAR1 gene family members in walnuts have been identified, ranging in length from 117 aa to 895 aa. These gene family members have FHY3 or FAR1 conserved domains, which are unevenly distributed on the 15 chromosomes (Chr) of the walnut (except for the Chr16). All 61 FHY3/FAR1 genes were divided into five subclasses (I, II, III, IV, and V) by phylogenetic tree analysis. The results indicated that FHY3/FAR1 genes in the same subclasses with similar structures might be involved in regulating the growth and development of walnut. The gene expression profiles were analyzed in different walnut kernel varieties (Q, T, and F). The result showed that some FHY3/FAR1 genes might be involved in the regulation of walnut kernel ripening and seed coat color formation. Seven genes (OF07056-RA, OF09665-RA, OF24282-RA, OF26012-RA, OF28029-RA, OF28030-RA, and OF08124-RA) were predicted to be associated with flavonoid biosynthetic gene regulation cis-acting elements in promoter sequences. RT-PCR was used to verify the expression levels of candidate genes during the development and color change of walnut kernels. In addition, light responsiveness and MeJA responsiveness are important promoter regulatory elements in the FHY3/FAR1 gene family, which are potentially involved in the light response, growth, and development of walnut plants. CONCLUSION: The results of this study provide a valuable reference for supplementing the genomic sequencing results of walnut, and pave the way for further research on the FHY3/FAR1 gene function of walnut.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Juglans , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Juglans/genética , Fitocromo/genética , Fitocromo/metabolismo , Nozes/metabolismo , Filogenia , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Physiol ; 64(10): 1139-1145, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37384577

RESUMO

FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED-IMPAIRED RESPONSE1 (FAR1) are transcription factors derived from transposases essential for phytochrome A-mediated light signaling. In addition to their essential role in light signaling, FHY3 and FAR1 also play diverse regulatory roles in plant growth and development, including clock entrainment, seed dormancy and germination, senescence, chloroplast formation, branching, flowering and meristem development. Notably, accumulating evidence indicates that the emerging role of FHY3 and FAR1 in environmental stress signaling has begun to be revealed. In this review, we summarize these recent findings in the context of FHY3 and FAR1 as integrators of light and other developmental and stressful signals. We also discuss the antagonistic action of FHY3/FAR1 and Phytochrome Interating Factors (PIFs) in various cross-talks between light, hormone and environmental cues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fitocromo/metabolismo , Germinação , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo
4.
Plant Cell Environ ; 46(5): 1582-1595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36721872

RESUMO

Senescence is the final stage of leaf development, limits and dictates the longevity of leaf. This stage is strictly controlled by internal developmental age signals and external environmental signals. However, the underlying mechanisms by which various signals integrating together to regulate leaf senescence remain largely unknown. Here, we show that the light signalling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) directly represses the transcription of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1), two key regulators of senescence, thus preventing chlorophyll degradation and extending the leaf longevity in Arabidopsis thaliana. Disrupting either PIF4 or NYE1 function completely rescued the early leaf senescence of fhy3-4 mutant. Interestingly, we found that FHY3 competes with PIF4 to bind to the G-box cis-element in NYE1 promoter, subsequently preventing the transcriptional activation of this gene by PIF4. Moreover, FHY3 transcript levels gradually increased in senescent leaves, which consist with disrupting FHY3 function accelerated chlorophyll degradation and shorted the leaf longevity. All these findings reveal that FHY3 is a master regulator that participates in multiple signalling pathways to increase leaf longevity. In addition, our study shed light on the dynamic regulatory mechanisms by which plants integrate light signalling and internal developmental cues to control leaf senescence and longevity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Ativação Transcricional , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Fitocromo/metabolismo
5.
Plant Cell Environ ; 44(6): 1816-1829, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33715163

RESUMO

Light is one of the most important environmental factors that affects various cellular processes in plant growth and development; it is also crucial for the metabolism of carbohydrates as it provides the energy source for photosynthesis. Under extended darkness conditions, carbon starvation responses are triggered by depletion of stored energy. Although light rapidly inhibits starvation responses, the molecular mechanisms by which light signalling affects this process remain largely unknown. In this study, we showed that the Arabidopsis thaliana light signalling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) are essential for plant survival after extended darkness treatment at both seedling and adult stages. Transmission electron microscopy analyses revealed that disruption of both FHY3 and FAR1 resulted in destruction of chloroplast envelopes and thylakoid membranes under extended darkness conditions. Furthermore, treatment with sucrose, but not glucose, completely rescued carbon starvation-induced cell death in the rosette leaves and arrested early seedling establishment in the fhy3 far1 plants. We thus concluded that the light signalling proteins FHY3 and FAR1 negatively regulate carbon starvation responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Carbono/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Morte Celular , Celulases/genética , Cloroplastos/metabolismo , Cloroplastos/patologia , Escuridão , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Glucose/farmacologia , Mutação , Proteínas Nucleares/genética , Fitocromo/genética , Células Vegetais , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sacarose/metabolismo , Sacarose/farmacologia , Tilacoides/metabolismo , Tilacoides/patologia
6.
Plant Cell Environ ; 42(12): 3280-3292, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31351015

RESUMO

Light is a key limiting factor of plant growth and development under the canopy. Specific light signals, such as a low ratio of red : far-red (R:FR) light, trigger the shade avoidance response, which affects hypocotyl, stem, and leaf growth. Although multiple components mediating shade avoidance responses have been identified in the past few decades, the underlying regulatory mechanism remains unclear. In this study, we found that the far-red elongated hypocotyls 3 (fhy3) mutant exhibited longer hypocotyls and increased expression levels of core shade avoidance response genes under low R:FR shade conditions compared with the wild type No-0, suggesting that FHY3 negatively regulates shade avoidance responses. Yeast one-hybrid, chromatin immunoprecipitation, and RT-qPCR assays revealed that FHY3 directly binds to the promoters and gene body of PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 and activates their expression to inhibit shade responses. Furthermore, the overexpression of PAR1 or PAR2 rescued the enhanced shade avoidance responses of fhy3, indicating that both genes are direct downstream targets of FHY3 that mediate shade avoidance responses. Our findings demonstrate that the light-signalling protein FHY3 positively regulates the transcription of PAR1 and PAR2, which encode two key negative regulators of shade avoidance responses, thus repressing plant responses to shade signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Escuridão , Fitocromo/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Fitocromo/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 113(33): 9375-80, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27469166

RESUMO

Plant meristems are responsible for the generation of all plant tissues and organs. Here we show that the transcription factor (TF) FAR-RED ELONGATED HYPOCOTYL3 (FHY3) plays an important role in both floral meristem (FM) determinacy and shoot apical meristem maintenance in Arabidopsis, in addition to its well-known multifaceted roles in plant growth and development during the vegetative stage. Through genetic analyses, we show that WUSCHEL (WUS) and CLAVATA3 (CLV3), two central players in the establishment and maintenance of meristems, are epistatic to FHY3 Using genome-wide ChIP-seq and RNA-seq data, we identify hundreds of FHY3 target genes in flowers and find that FHY3 mainly acts as a transcriptional repressor in flower development, in contrast to its transcriptional activator role in seedlings. Binding motif-enrichment analyses indicate that FHY3 may coregulate flower development with three flower-specific MADS-domain TFs and four basic helix-loop-helix TFs that are involved in photomorphogenesis. We further demonstrate that CLV3, SEPALLATA1 (SEP1), and SEP2 are FHY3 target genes. In shoot apical meristem, FHY3 directly represses CLV3, which consequently regulates WUS to maintain the stem cell pool. Intriguingly, CLV3 expression did not change significantly in fhy3 and phytochrome B mutants before and after light treatment, indicating that FHY3 and phytochrome B are involved in light-regulated meristem activity. In FM, FHY3 directly represses CLV3, but activates SEP2, to ultimately promote FM determinacy. Taken together, our results reveal insights into the mechanisms of meristem maintenance and determinacy, and illustrate how the roles of a single TF may vary in different organs and developmental stages.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Fitocromo/fisiologia , Fatores de Transcrição/genética , Flores/crescimento & desenvolvimento , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia
8.
Mol Biol Evol ; 33(8): 1937-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189548

RESUMO

Once perceived as merely selfish, transposable elements (TEs) are now recognized as potent agents of adaptation. One way TEs contribute to evolution is through TE exaptation, a process whereby TEs, which persist by replicating in the genome, transform into novel host genes, which persist by conferring phenotypic benefits. Known exapted TEs (ETEs) contribute diverse and vital functions, and may facilitate punctuated equilibrium, yet little is known about this process. To better understand TE exaptation, we designed an approach to resolve the phylogenetic context and timing of exaptation events and subsequent patterns of ETE diversification. Starting with known ETEs, we search in diverse genomes for basal ETEs and closely related TEs, carefully curate the numerous candidate sequences, and infer detailed phylogenies. To distinguish TEs from ETEs, we also weigh several key genomic characteristics including repetitiveness, terminal repeats, pseudogenic features, and conserved domains. Applying this approach to the well-characterized plant ETEs MUG and FHY3, we show that each group is paraphyletic and we argue that this pattern demonstrates that each originated in not one but multiple exaptation events. These exaptations and subsequent ETE diversification occurred throughout angiosperm evolution including the crown group expansion, the angiosperm radiation, and the primitive evolution of angiosperms. In addition, we detect evidence of several putative novel ETE families. Our findings support the hypothesis that TE exaptation generates novel genes more frequently than is currently thought, often coinciding with key periods of evolution.


Assuntos
Elementos de DNA Transponíveis , Genes de Plantas , Evolução Biológica , Evolução Molecular , Genoma de Planta , Genômica , Magnoliopsida/genética , Filogenia , Fitocromo/genética
9.
New Phytol ; 213(4): 1682-1696, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27859295

RESUMO

In living organisms, daily light/dark cycles profoundly affect cellular processes. In plants, optimal growth and development, and adaptation to daily light-dark cycles, require starch synthesis and turnover. However, the underlying molecular mechanisms coordinating daily starch metabolism remain poorly understood. To explore the roles of Arabidopsis thaliana light signal transduction proteins FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) in starch metabolism, the contents of starch and water-soluble polysaccharides, and the structure of starch granules were investigated in fhy3, far1 and fhy3 far1 mutant plants. Disruption of FHY3 or FAR1 reduced starch accumulation and altered starch granule structure in the fhy3-4, far1-2, and fhy3-4 far1-2 mutant plants. Furthermore, molecular and genetic evidence revealed that the gene encoding the starch-debranching enzyme ISOAMYLASE2 (ISA2) is a direct target of FHY3 and FAR1, and functions in light-induced starch synthesis. Our data establish the first molecular link between light signal transduction and starch synthesis, suggesting that the light-signaling proteins FHY3 and FAR1 influence starch synthesis and starch granule formation through transcriptional activation of ISA2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Amido/biossíntese , Açúcares/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Modelos Biológicos , Mutação/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Amido/metabolismo , Amido/ultraestrutura , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação
10.
J Integr Plant Biol ; 58(1): 91-103, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25989254

RESUMO

Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/efeitos da radiação , Clorofila/biossíntese , Transdução de Sinal Luminoso/efeitos da radiação , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Imunidade Vegetal/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morte Celular/efeitos da radiação , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Transdução de Sinal Luminoso/genética , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/genética , Fenótipo , Fitocromo/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
11.
Plant J ; 75(5): 795-807, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23662592

RESUMO

ARC5 is a dynamin-related GTPase essential for the division of chloroplasts in plants. The arc5 mutant frequently exhibits enlarged, dumbbell-shaped chloroplasts, indicating a role for ARC5 in the constriction of the chloroplast division site. In a screen for chloroplast division mutants with a phenotype similar to arc5, two mutants, cpd25 and cpd45, were obtained. CPD45 was identified as being the same gene as FHY3, a key regulator of far-red light signaling recently shown to be involved in the regulation of ARC5. CPD25 was previously named FRS4 and is homologous to FHY3. We found that CPD25 is also required for the expression of ARC5, suggesting that its function is not redundant to that of FHY3. Moreover, cpd25 does not have the far-red light-sensing defect present in fhy3 and far1. Both FRS4/CPD25 and FHY3/CPD45 could bind to the FBS-like 'ACGCGC' motifs in the promoter region of ARC5, and the binding efficiency of FRS4/CPD25 was much higher than that of FHY3/CPD45. Unlike FHY3/CPD45, FRS4/CPD25 has no ARC5 activation activity. Our data suggest that FRS4/CPD25 and FHY3/CPD45 function as a heterodimer that cooperatively activates ARC5, that FRS4/CPD25 plays the major role in promoter binding, and that FHY3/CPD45 is largely responsible for the gene activation. This study not only provides insight into the mechanisms underlying the regulation of chloroplast division in higher plants, but also suggests a model that shows how members of a transcription factor family can evolve to have different DNA-binding and gene activation features.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Dinaminas/metabolismo , Fitocromo/fisiologia , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cloroplastos/genética , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Mapeamento Cromossômico , Dinaminas/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fitocromo/genética , Fitocromo/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Regiões Promotoras Genéticas
12.
J Genet Eng Biotechnol ; 22(3): 100401, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39179323

RESUMO

A significant role of the plant is played by the transcription factor FARL, which is light signal transduction as well as plant growth and development. Despite being transposases, FARL has developed a variety of dominant biological actions in evolution and speciation. On the other hand, little is known about the Zea mays FARL protein family. This study identifies and characterizes fifteen ZmFARL genes genome-wide, and RNA sequencing data was used to profile their expression. 105 FARL proteins from five plant species were classified into five groups based on sequence alignment and phylogeny. The ZmFARL genes' exon-intron and motif distribution were conserved based on their evolutionary group. The fifteen ZmFARL genes were distributed over seven of the ten Z. mays chromosomes, although no duplication was discovered. Cis-element analysis reveals that ZmFARL genes play a variety of activities, including tissue-specific, stress- and hormone-responsive expressions. Furthermore, the results of the RNA sequencing used to profile expression showed that the genes ZmFARL2 and ZmFARL5 were much more expressed than other genes in various tissues, particularly in leaf characteristics. The identification of likely genes involved in cellular activity in Z. mays and related species will be aided by the characterization of the FARL genes.

13.
Front Plant Sci ; 13: 809563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645991

RESUMO

The plants' internal circadian clock can strongly influence phytochrome signaling in response to the changes in the external light environment. Phytochrome A (phyA) is the photoreceptor that mediates various far-red (FR) light responses. phyA signaling is modulated by FHY3 and FAR1, which directly activate the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. However, the mechanisms by which the clock regulates phyA signaling are poorly understood. Here, we discovered that FHY1 expression is diurnally regulated, peaking in the middle of the day. Two Arabidopsis core clock components, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and TIMING OF CAB EXPRESSION1 (TOC1), repress FHY3/FAR1-mediated FHY1/FHL activation. Consistently, the specific expression pattern of FHY1 under diurnal conditions is altered in cca1-1, toc1-101, CCA1, and TOC1 overexpression plants. Furthermore, far-red induced gene expression and particularly nuclear accumulation of phyA are compromised in TOC1 and CCA1 overexpression seedlings. Our results therefore revealed a previously unidentified FHY1 expression pattern in diurnal cycles, which is negatively regulated by CCA1 and TOC1.

14.
Front Plant Sci ; 13: 883654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599891

RESUMO

FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1), which play pivotal roles in plant growth and development, are essential for the photo-induced phyA nuclear accumulation and subsequent photoreaction. The FAR1/FHY3 family has been systematically characterized in some plants, but not in Eucalyptus grandis. In this study, genome-wide identification of FAR1/FHY3 genes in E. grandis was performed using bioinformatic methods. The gene structures, chromosomal locations, the encoded protein characteristics, 3D models, phylogenetic relationships, and promoter cis-elements were analyzed with this gene family. A total of 33 FAR1/FHY3 genes were identified in E. grandis, which were divided into three groups based on their phylogenetic relationships. A total of 21 pairs of duplicated repeats were identified by homology analysis. Gene expression analysis showed that most FAR1/FHY3 genes were differentially expressed in a spatial-specific manner. Gene expression analysis also showed that FAR1/FHY3 genes responded to salt and temperature stresses. These results and observation will enhance our understanding of the evolution and function of the FAR1/FHY3 genes in E. grandis and facilitate further studies on the molecular mechanism of the FAR1/FHY3 gene family in growth and development regulations, especially in response to salt and temperature.

15.
Front Plant Sci ; 12: 770060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777451

RESUMO

Leaf senescence is the terminal stage of leaf development. Both light and the plant hormone ethylene play important roles in regulating leaf senescence. However, how they coordinately regulate leaf senescence during leaf development remains largely unclear. In this study, we show that FHY3 and FAR1, two homologous proteins essential for phytochrome A-mediated light signaling, physically interact with and repress the DNA binding activity of EIN3 (a key transcription factor essential for ethylene signaling) and PIF5 (a bHLH transcription factor negatively regulating light signaling), and interfere with their DNA binding to the promoter of ORE1, which encodes a key NAC transcription factor promoting leaf senescence. In addition, we show that FHY3, PIF5, and EIN3 form a tri-protein complex(es) and that they coordinately regulate the progression of leaf senescence. We show that during aging or under dark conditions, accumulation of FHY3 protein decreases, thus lifting its repression on DNA binding of EIN3 and PIF5, leading to the increase of ORE1 expression and onset of leaf senescence. Our combined results suggest that FHY3 and FAR1 act in an age gating mechanism to prevent precocious leaf senescence by integrating light and ethylene signaling with developmental aging.

16.
Genes (Basel) ; 13(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052394

RESUMO

Pineapple (Ananas comosus (L.) Merr.) is the second most important tropical fruit crop globally, and 'MD2' is the most important cultivated variety. A high-quality genome is important for molecular-based breeding, but available pineapple genomes still have some quality limitations. Here, PacBio and Hi-C data were used to develop a new high-quality MD2 assembly and gene prediction. Compared to the previous MD2 assembly, major improvements included a 26.6-fold increase in contig N50 length, phased chromosomes, and >6000 new genes. The new MD2 assembly also included 161.6 Mb additional sequences and >3000 extra genes compared to the F153 genome. Over 48% of the predicted genes harbored potential deleterious mutations, indicating that the high level of heterozygosity in this species contributes to maintaining functional alleles. The genome was used to characterize the FAR1-RELATED SEQUENCE (FRS) genes that were expanded in pineapple and rice. Transposed and dispersed duplications contributed to expanding the numbers of these genes in the pineapple lineage. Several AcFRS genes were differentially expressed among tissue-types and stages of flower development, suggesting that their expansion contributed to evolving specialized functions in reproductive tissues. The new MD2 assembly will serve as a new reference for genetic and genomic studies in pineapple.


Assuntos
Ananas/genética , Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta , Haplótipos , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Ananas/crescimento & desenvolvimento , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genômica , Análise de Sequência de DNA
17.
Plant Signal Behav ; 15(3): 1726636, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32043408

RESUMO

Phytochrome A (phyA) is the primary photoreceptor mediating various plant responses to far-red (FR) light. The defense-related phytohorme jasmonic acid (JA) has been shown recently to play a role in regulating phyA-mediated FR signaling. However, the detailed molecular mechanisms governing phyA- and JA-mediated signaling cross talks are still not well understood. Here, we uncover a molecular cascade in which JAZ1 inactivates phyA signaling through repressing the transcriptional activity of FHY3 on FHY1 and FHL. Furthermore, we demonstrate that the expression levels of FHY1 and FHL, and some FR response genes are reduced in the coi1 mutant. These findings unveil a previously unrecognized mechanism whereby JA modulates phyA signaling through repressing the activities of FHY3 by JAZs.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Fitocromo A/metabolismo , Transdução de Sinais/fisiologia
18.
Mol Plant ; 13(3): 483-498, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017999

RESUMO

In response to competition for light from their neighbors, shade-intolerant plants flower precociously to ensure reproductive success and survival. However, the molecular mechanisms underlying this key developmental switch are not well understood. Here, we show that a pair of Arabidopsis transcription factors essential for phytochrome A signaling, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), regulate flowering time by integrating environmental light signals with the miR156-SPL module-mediated aging pathway. We found that FHY3 and FAR1 directly interact with three flowering-promoting SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, SPL3, SPL4, and SPL5, and inhibit their binding to the promoters of several key flowering regulatory genes, including FRUITFUL (FUL), LEAFY (LFY), APETALA1 (AP1), and MIR172C, thus downregulating their transcript levels and delaying flowering. Under simulated shade conditions, levels of SPL3/4/5 proteins increase, whereas levels of FHY3 and FAR1 proteins decline, thus releasing SPL3/4/5 from FHY3/FAR1 inhibition to allow activation of FUL, LFY, AP1, and MIR172C and, consequently, early flowering. Taken together, these results unravel a novel mechanism whereby plants regulate flowering time by integrating environmental cues (such as light conditions) and an internal developmental program (the miR156-SPL module-mediated aging pathway).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Flores/crescimento & desenvolvimento , Luz , MicroRNAs/genética , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/efeitos da radiação , Cinética , Regulação para Cima/efeitos da radiação
19.
Front Plant Sci ; 9: 692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930561

RESUMO

Transposable elements make important contributions to adaptation and evolution of their host genomes. The well-characterized transposase-derived transcription factor FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and its homologue FAR-RED IMPAIRED RESPONSE1 (FAR1) have crucial functions in plant growth and development. In addition, FHY3 and FAR1 are the founding members of the FRS (FAR1-RELATED SEQUENCE) and FRF (FRS-RELATED FACTOR) families, which are conserved among land plants. Although the coding sequences of many putative FRS and FRF orthologs have been found in various clades of angiosperms, their physiological functions remain elusive. Here, we summarize recent progress toward characterizing the molecular mechanisms of FHY3 and FAR1, as well as other FRS-FRF family proteins, examining their roles in regulating plant growth and development. This review also suggests future directions for further functional characterization of other FRS-FRF family proteins in plants.

20.
Plant Signal Behav ; 11(10): e1238545, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27660915

RESUMO

The transposase-derived transcription factor genes FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1) have redundant and multifaceted roles in plant growth and development during the vegetative stage, including phytochrome A-mediated far-red light (FR) signaling and circadian clock entrainment. Little is known about their functions in the reproductive stage. We recently demonstrated that FHY3 plays important roles in shoot apical meristem (SAM) maintenance and floral meristem (FM) determinacy through its target genes CLAVATA3 (CLV3), SEPALLATA1 (SEP1) and SEP2. Here we present data that FHY3 but not its homolog, FAR1, has a distinct role in FM determinacy in a manner independent of its light signaling and circadian pathway functions. Moreover, genome-wide gene expression profiling showed that the homeostasis of the FM is critical for the regulation of FM activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA