Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 80(3): 656-668, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32778917

RESUMO

Banana (Musa acuminata) growth for commercial purposes requires high amounts of chemical fertilizers, generating high costs and deleterious effects on the environment. In a previous study, we demonstrated that two plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens Bs006 and Pseudomonas palleroniana Ps006, isolated in Colombia, could partially replace chemical fertilizers for banana seedling growth. In a second work, the effects of the two inoculants on banana transcripts were found to occur at different times, earlier for Bs006 and later for Ps006. This leads to the hypothesis that the two rhizobacteria have different colonization dynamics. Accordingly, the aim of this work was to analyze the dynamics of root colonization of the two PGPR, Bs006 and Ps006, on banana growth over a time frame of 30 days. We used fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM), followed by three-dimensional reconstruction and quantitative image analysis. Bacillus amyloliquefaciens Bs006 abundantly colonized banana roots earlier (from 1 to 48 h), ectophytically on the rhizoplane, and then decreased. Pseudomonas palleroniana Ps006 was initially scarce, but after 96 h it increased dramatically and became clearly endophytic. Here we identify and discuss the potential genetic factors responsible for this complementary behavior. This information is crucial for optimizing the formulation of an effective biofertilizer for banana and its inoculation strategy.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Musa/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Colômbia , Rizosfera , Análise Espaço-Temporal
2.
Eur Spine J ; 28(12): 2951-2971, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31359216

RESUMO

PURPOSE: Recent research shows an increasing recognition that organisms not traditionally considered infectious in nature contribute to disease processes. Propionibacterium acnes (P. acnes) is a gram-positive, aerotolerant anaerobe prevalent in the sebaceous gland-rich areas of the human skin. A ubiquitous slow-growing organism with the capacity to form biofilm, P. acnes, recognized for its role in acne vulgaris and medical device-related infections, is now also linked to a number of other human diseases. While bacterial culture and molecular techniques are used to investigate the involvement of P. acnes in such diseases, definitive demonstration of P. acnes infection requires a technique (or techniques) sensitive to the presence of biofilms and insensitive to the presence of potential contamination. Fortunately, there are imaging techniques meeting these criteria, in particular, fluorescence in situ hybridization and immunofluorescence coupled with confocal laser scanning microscopy, as well as immunohistochemistry. METHODS: Our literature review considers a range of microscopy-based studies that provides definitive evidence of P. acnes colonization within tissue from a number of human diseases (acne vulgaris, degenerative disc and prostate disease and atherosclerosis), some of which are currently not considered to have an infectious etiology. RESULTS/CONCLUSION: We conclude that P. acnes is an opportunistic pathogen with a likely underestimated role in the development of various human diseases associated with significant morbidity and, in some cases, mortality. As such, these findings offer the potential for new studies aimed at understanding the pathological mechanisms driving the observed disease associations, as well as novel diagnostic strategies and treatment strategies, particularly for degenerative disc disease. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Biofilmes , Infecções por Bactérias Gram-Positivas , Degeneração do Disco Intervertebral , Microscopia , Propionibacterium acnes , Acne Vulgar/diagnóstico por imagem , Acne Vulgar/microbiologia , Infecções por Bactérias Gram-Positivas/diagnóstico por imagem , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/microbiologia
3.
Mol Ecol ; 23(18): 4498-510, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-25113243

RESUMO

Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria.


Assuntos
Bactérias/genética , Metagenoma , Sphagnopsida/microbiologia , Áreas Alagadas , Microbiota , RNA Ribossômico 16S/genética , Sphagnopsida/genética
4.
Methods Mol Biol ; 2232: 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161534

RESUMO

Recent studies indicate that seed microbiomes affect germination and plant performance. However, the interplay between seed microbiota and plant health is still poorly understood. To get a complete picture of the system, a comprehensive analysis is required, comprising culture-dependent and culture-independent techniques. In this chapter, we provide a combination of methods that are established and optimized for the analysis of the seed microbiome. These include methods to: (1) activate and cultivate dormant seed microbiota, (2) analyze microbiota in germinated seeds (with and without substrate), (3) quantify microbial DNA via real-time PCR, (4) deplete host DNA for amplicon and metagenome analysis, and (5) visualize seed endophytes in microtomed sections using fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). A deep understanding of the seed microbiome and its functions can help in developing new seed treatments and breeding strategies for sustainable agriculture.


Assuntos
Hibridização in Situ Fluorescente/métodos , Microbiota/genética , Plantas/genética , Sementes/genética , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Germinação/genética , Metagenoma/genética , Plantas/microbiologia , RNA Ribossômico 16S/genética , Sementes/microbiologia
5.
Microbiol Res ; 220: 12-20, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30744815

RESUMO

Banana is the second largest export crop in Colombia. To meet the demand of international markets, high amounts of chemical fertilizers are required, which represent high costs and can be hazardous to the environment. Plant growth promoting rhizobacteria (PGPR) can, at least partially, replace chemical fertilizers. In this paper, we evaluated the effect of nine PGPR of the genera Bacillus and Pseudomonas on banana growth. Banana seedlings were produced through tissue culture and acclimatized in the greenhouse core. Plants were inoculated with the rhizobacteria and growth parameters (plant height, leaf number, leaf area, pseudostem thickness, root and shoot fresh weight, root and shoot dry weight) were assessed after 55 days. The two best performing PGPR, Bs006 and Ps006 previously identified as Bacillus amyloliquefaciens and Pseudomonas fluorescens, respectively, promoted banana growth similarly or even slightly superior to 100% chemical fertilization, and were selected for further characterization of root colonization by both eletron microscopy and confocal microscopy of fluorescence in situ hybridization (FISH)-stained root tissues. Both P. fluorescens Ps006 and B. amyloquifaciens Bs006 showed ability to colonize banana roots, but Bs006 appeared faster than Ps006 in the colonization dynamics. This work demonstrated that inoculation of rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006 could partially replace the chemical fertilization of tissue cultured banana plants, and therefore could be used for the formulation of a new biofertilizer.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Musa/crescimento & desenvolvimento , Musa/microbiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/fisiologia , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/isolamento & purificação , Colômbia , Fertilizantes , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Varredura , Folhas de Planta/crescimento & desenvolvimento , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/isolamento & purificação , Plântula , Solo/química , Microbiologia do Solo
6.
Waste Manag ; 78: 135-143, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32559896

RESUMO

Methane (CH4) emissions are a major environmental concern in composting facilities. Therefore, this study initially visualized the dynamic distribution and quantity of methanogens and methanotrophs in composting particles during manure aerobic composting using fluorescence in situ hybridization-confocal laser scanning microscopy (FISH-CLSM) and quantified their correlation with CH4 emissions. The visualization results showed that methanogens existed inside the particles, while methanotrophs clustered in the outer layer; a facultative anaerobic zone existed in between. The quantification results of integral optical density of methanogens and methanotrophs per unit particle area (Ugen and Uoxi, respectively) indicated that, in the cooling phase, CH4 generation and oxidation could still be high and could strike a balance if the initial organic matter content of composting materials is high, while both could be extremely low if the content is low. A strong linearity between Ugen obtained by FISH-CLSM and methyl-coenzyme M reductase copy number obtained by quantitative polymerase chain reaction analysis (R2 = 0.88) was observed, which justified the effectiveness of the FISH-CLSM method and demonstrated that macro-scale CH4 emissions were essentially an accumulation of particle-scale CH4 emissions. CH4 emissions were equal to 3.3297 × 107Ugen - 3.1814 × 106Uoxi - 3902.9900 (R2 = 0.98). Overall, the results showed that methanogens exerted more influence on CH4 emissions than methanotrophs. Combining these results with CH4-generation and -oxidation kinetics may help illustrate CH4-emission mechanisms, improve particle-scale CH4-emission models, and thereby provide theoretical guidance for operation optimization and emission reduction in composting processes.

7.
Front Plant Sci ; 9: 431, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681910

RESUMO

The colonization behavior of the Xylella fastidiosa strain CoDiRO, the causal agent of olive quick decline syndrome (OQDS), within the xylem of Olea europaea L. is still quite controversial. As previous literature suggests, even if xylem vessel occlusions in naturally infected olive plants were observed, cell aggregation in the formation of occlusions had a minimal role. This observation left some open questions about the whole behavior of the CoDiRO strain and its actual role in OQDS pathogenesis. In order to evaluate the extent of bacterial infection in olive trees and the role of bacterial aggregates in vessel occlusions, we tested a specific fluorescence in situ hybridization (FISH) probe (KO 210) for X. fastidiosa and quantified the level of infection and vessel occlusion in both petioles and branches of naturally infected and non-infected olive trees. All symptomatic petioles showed colonization by X. fastidiosa, especially in the larger innermost vessels. In several cases, the vessels appeared completely occluded by a biofilm containing bacterial cells and extracellular matrix and the frequent colonization of adjacent vessels suggested a horizontal movement of the bacteria. Infected symptomatic trees had 21.6 ± 10.7% of petiole vessels colonized by the pathogen, indicating an irregular distribution in olive tree xylem. Thus, our observations point out the primary role of the pathogen in olive vessel occlusions. Furthermore, our findings indicate that the KO 210 FISH probe is suitable for the specific detection of X. fastidiosa.

8.
Water Res ; 104: 292-302, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27551781

RESUMO

Suppression of nitrite oxidizing bacteria (NOB) is of vital importance to achieve successful, energy efficient, mainstream anammox processes for wastewater treatment. In this study, biofilm carriers from a fully nitrifying MBBR system, fed with mainstream wastewater, were temporarily exposed to reject water from sludge dewatering, to evaluate this as a possible strategy to inhibit NOB and achieve nitrite production under realistic conditions. Two different carrier types were compared, in which biofilm thickness was maintained at approximately 400 and 50 µm, respectively, and reject treatment was tested at different exposure time and loading rates. Reject exposure almost always resulted in an increased nitrite production in the thinner biofilm, and overall, nitrifiers growing in the thin biofilm were more sensitive than those grown in the thicker biofilm. The effect from reject exposure remained in the systems for four days after returning to mainstream operation, with nitrite production gradually increasing for three days. Increased concentrations of free ammonia correlated with reject exposure and may be the cause of inhibition, although other factors cannot be excluded.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Bactérias , Nitrificação , Nitritos , Água
9.
FEMS Microbiol Ecol ; 91(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26472578

RESUMO

Predation is assumed to be a major cause of bacterial mortality in wastewater treatment plants (WWTP). Grazing on the slowly growing autotrophic ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AMX) may result in loss of biomass, which could compromise nitrogen removal by the nitritation-anammox process. However, predation, particularly of anaerobic AMX, is unknown. We investigated the presence of protozoa, AOB and AMX and the possible predation in nitritation-anammox biofilms from several WWTPs. By fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM), predator and prey were localized in intact biofilm cryosections. Different broad morphological types of protozoa were found at different biofilm depths. Large variations in abundance of protozoa were seen. One reactor showed a predation event of amoeba-like protozoa, forming grazing fronts reaching deep biofilm regions that were dominated by the anaerobic AMX. Both AOB and AMX were grazed by the amoeba, as revealed by FISH-CLSM. Hence, even AMX, living in the deeper layers of stratified biofilms, are subjected to predation. Interestingly, different colocalization was observed between the amoeba-like protozoa and two different Ca. Brocadia AMX sublineages, indicating different grazing patterns. The findings indicate that predation pressure can be an important factor regulating the abundance of AOB and AMX, with implications for nitrogen removal from wastewater.


Assuntos
Bactérias/metabolismo , Biofilmes , Eucariotos/classificação , Eucariotos/fisiologia , Cadeia Alimentar , Águas Residuárias/microbiologia , Purificação da Água , Bactérias/classificação , Bactérias Anaeróbias/genética , Desnitrificação , Hibridização in Situ Fluorescente , Microscopia Confocal , Nitrogênio/análise , Oxirredução
10.
Bioresour Technol ; 154: 267-73, 2014 02.
Artigo em Inglês | MEDLINE | ID: mdl-24412479

RESUMO

It is a challenge to apply anaerobic ammonium oxidation (anammox) for nitrogen removal from wastewater at low temperatures. Maintenance of anammox- and aerobic ammonia oxidizing bacteria (AOB) and suppression of nitrite oxidizing bacteria (NOB) are key issues. In this work, a nitritation-anammox moving bed biofilm pilot reactor was operated at 19-10°C for 300 d. Nitrogen removal was decreasing, but stable, at 19-13°C. At 10°C removal became unstable. Quantitative PCR, fluorescence in situ hybridization and gene sequencing showed that no major microbial community changes were observed with decreased temperature. Anammox bacteria dominated the biofilm (0.9-1.2 × 10(14) 16S rRNA copies m(-2)). Most anammox bacteria were similar to Brocadia sp. 40, but another smaller Brocadia population was present near the biofilm-water interface, where also the AOB community (Nitrosomonas) was concentrated in thin layers (1.8-5.3 × 10(12) amoA copies m(-2)). NOB (Nitrobacter, Nitrospira) were always present at low concentrations (<1.3 × 10(11) 16S rRNA copies m(-2)).


Assuntos
Amônia/metabolismo , Biofilmes , Reatores Biológicos/microbiologia , Temperatura Baixa , Consórcios Microbianos , Nitrificação , Compostos de Amônio/metabolismo , Anaerobiose , Bactérias/metabolismo , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução , Filogenia
11.
FEMS Microbiol Ecol ; 85(2): 348-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23551015

RESUMO

The formation of biofilms and biofouling is a common feature in aquatic environments. The aim of this study was to identify the primary colonizers of biofilm formed in Eastern Mediterranean Coastal water at different seasons and follow early dynamics of biofilm community development. Pre-treated coastal seawater and biofilm samples were collected from six different sampling events of 2 weeks' duration each during 1 year. The microbial community composition and specific abundance were estimated by 16S rRNA gene clone libraries and fluorescence in situ hybridization-confocal laser scanning microscopy (FISH-CLSM), respectively. The biofilm formed over the course of the year was fairly consistent in terms of community composition and overall abundance with the exception of spring season. Alphaproteobacteria (30-70% of total bacteria), in particular Rhodobacteraceae, were the dominant bacteria in the biofilm, regardless of season, followed by Bacteroidetes (5-35%) and Gammaproteobacteria (6-35%). There was a decrease in relative abundance of Alphaproteobacteria and an increase in the abundance of Bacteroidetes between the initial and 2-week-old biofilm. This observation may aid man-made facilities that have to deal with biofilm formation and help the development of appropriate strategies to control those biofilms.


Assuntos
Biofilmes , Rhodobacteraceae/isolamento & purificação , Água do Mar/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Biblioteca Gênica , Hibridização in Situ Fluorescente , Mar Mediterrâneo , Microscopia Confocal , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética
12.
Front Microbiol ; 4: 394, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391630

RESUMO

The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses - model plants for long-term associations - in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves.

13.
Front Plant Sci ; 4: 141, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717321

RESUMO

Stenotrophomonas rhizophila has great potential for applications in biotechnology and biological control due to its ability to both promote plant growth and protect roots against biotic and a-biotic stresses, yet little is known about the mode of interactions in the root-environment system. We studied mechanisms associated with osmotic stress using transcriptomic and microscopic approaches. In response to salt or root extracts, the transcriptome of S. rhizophila DSM14405(T) changed drastically. We found a notably similar response for several functional gene groups responsible for general stress protection, energy production, and cell motility. However, unique changes in the transcriptome were also observed: the negative regulation of flagella-coding genes together with the up-regulation of the genes responsible for biofilm formation and alginate biosynthesis were identified as a single mechanism of S. rhizophila DSM14405(T) against salt shock. However, production and excretion of glucosylglycerol (GG) were found as a remarkable mechanism for the stress protection of this Stenotrophomonas strain. For S. rhizophila treated with root exudates, the shift from the planktonic lifestyle to a sessile one was measured as expressed in the down-regulation of flagellar-driven motility. These findings fit well with the observed positive regulation of host colonization genes and microscopic images that show different colonization patterns of oilseed rape roots. Spermidine, described as a plant growth regulator, was also newly identified as a protector against stress. Overall, we identified mechanisms of Stenotrophomonas to protect roots against osmotic stress in the environment. In addition to both the changes in life style and energy metabolism, phytohormons, and osmoprotectants were also found to play a key role in stress protection.

14.
Front Microbiol ; 2: 275, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22294982

RESUMO

Sphagnum mosses represent a main vegetation component in ombrotrophic wetlands. They harbor a specific and diverse microbial community with essential functions for the host. To understand the extend of host specificity and impact of environment, Sphagnum fallax and Sphagnum angustifolium, two phylogenetically closely related species, which show distinct habitat preference with respect to the nutrient level, were analyzed by a multifaceted approach. Microbial fingerprints obtained by PCR-single-strand conformation polymorphism of 16S rRNA and nitrogenase-encoding (nifH) genes were highly similar for both Sphagnum species. Similarity was confirmed for colonization patterns obtained by fluorescence in situ hybridization (FISH) coupled with confocal laser scanning microscopy (CLSM): Alphaproteobacteria were the main colonizers inside the hyaline cells of Sphagnum leaves. A deeper survey of Alphaproteobacteria by 16S rRNA gene amplicon sequencing reveals a high diversity with Acidocella, Acidisphaera, Rhodopila, and Phenylobacterium as major genera for both mosses. Nitrogen fixation is an important function of Sphagnum-associated bacteria, which is fulfilled by microbial communities of Sphagna in a similar way. NifH libraries of Sphagnum-associated microbial communities were characterized by high diversity and abundance of Alphaproteobacteria but contained also diverse amplicons of other taxa, e.g., Cyanobacteria and Deltaproteobacteria. Statistically significant differences between the microbial communities of both Sphagnum species could not be discovered in any of the experimental approach. Our results show that the same close relationship, which exists between the physical, morphological, and chemical characteristics of Sphagnum mosses and the ecology and function of bog ecosystems, also connects moss plantlets with their associated bacterial communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA