Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Cell Biochem ; 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37087733

RESUMO

Coordinated cochaperone interactions with Hsp90 and associated client proteins are crucial for a multitude of signaling pathways in normal physiology, as well as in disease settings. Research on the molecular mechanisms regulated by the Hsp90 multiprotein complexes has demonstrated increasingly diverse roles for cochaperones throughout Hsp90-regulated signaling pathways. Thus, the Hsp90-associated cochaperones have emerged as attractive therapeutic targets in a wide variety of disease settings. The tetratricopeptide repeat (TPR)-domain immunophilins FKBP51 and FKBP52 are of special interest among the Hsp90-associated cochaperones given their Hsp90 client protein specificity, ubiquitous expression across tissues, and their increasingly important roles in neuronal signaling, intracellular calcium release, peptide bond isomerization, viral replication, steroid hormone receptor function, and cell proliferation to name a few. This review summarizes the current knowledge of the structure and molecular functions of TPR-domain immunophilins FKBP51 and FKBP52, recent findings implicating these immunophilins in disease, and the therapeutic potential of targeting FKBP51 and FKBP52 for the treatment of disease.

2.
J Cell Biochem ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791213

RESUMO

The FK506-binding protein 51 (FKBP51) is a high-molecular-weight immunophilin that emerged as an important drug target for stress-related disorders, chronic pain, and obesity. It has been implicated in a plethora of molecular pathways but remains best characterized as a co-chaperone of Hsp90 in the steroid hormone receptor (SHR) maturation cycle. However, the mechanistic and structural basis for the regulation of SHRs by FKBP51 and the usually antagonistic function compared with its closest homolog FKBP52 remains enigmatic. Here we review recent structural and biochemical studies of FKBPs as regulators in the Hsp90 machinery. These advances provide important insights into the roles of FKBP51 and FKBP52 in SHR regulation.

3.
Cancer Sci ; 114(7): 2729-2738, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026526

RESUMO

FK506 binding protein 52 (FKBP52) (gene name FKBP4) is a 52 kDa protein that belongs to the FKBP family; it binds to the immunosuppressant FK506 and has proline isomerase activity. In addition to its FK domain-containing peptidylprolyl isomerase activity, FKBP52 also acts as a cochaperone through the tetratricopeptide repeat domain that mediates binding to heat shock protein 90. Previous studies have reported that FKBP52 is associated with hormone-dependent, stress-related, and neurodegenerative diseases, revealing its diverse functions. In particular, the effects of FKBP52 on cancer have attracted considerable attention. FKBP52 promotes the growth of hormone-dependent cancers by activating steroid hormone receptors. Recent studies have shown that the expression of FKBP52 is increased not only in steroid hormone-dependent cancer cells but also in colorectal, lung, and liver cancers, revealing its diverse functions that contribute to cancer growth. This review summarizes reports related to hormone-dependent cancer and cell proliferation in terms of the structure of FKBP52 and its function on interacting molecules.


Assuntos
Neoplasias Hormônio-Dependentes , Proteínas de Ligação a Tacrolimo , Humanos , Proliferação de Células/genética , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Ligação Proteica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
4.
J Cell Sci ; 133(12)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467326

RESUMO

It has been demonstrated that tetratricopeptide-repeat (TPR) domain proteins regulate the subcellular localization of glucocorticoid receptor (GR). This study analyses the influence of the TPR domain of high molecular weight immunophilins in the retrograde transport and nuclear retention of GR. Overexpression of the TPR peptide prevented efficient nuclear accumulation of the GR by disrupting the formation of complexes with the dynein-associated immunophilin FKBP52 (also known as FKBP4), the adaptor transporter importin-ß1 (KPNB1), the nuclear pore-associated glycoprotein Nup62 and nuclear matrix-associated structures. We also show that nuclear import of GR was impaired, whereas GR nuclear export was enhanced. Interestingly, the CRM1 (exportin-1) inhibitor leptomycin-B abolished the effects of TPR peptide overexpression, although the drug did not inhibit GR nuclear export itself. This indicates the existence of a TPR-domain-dependent mechanism for the export of nuclear proteins. The expression balance of those TPR domain proteins bound to the GR-Hsp90 complex may determine the subcellular localization and nucleocytoplasmic properties of the receptor, and thereby its pleiotropic biological properties in different tissues and cell types.


Assuntos
Receptores de Glucocorticoides , Repetições de Tetratricopeptídeos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Poro Nuclear/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
5.
Bioessays ; 42(7): e1900250, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32323357

RESUMO

Peptidylprolyl-isomerases (PPIases) comprise of the protein families of FK506 binding proteins (FKBPs), cyclophilins, and parvulins. Their common feature is their ability to expedite the transition of peptidylprolyl bonds between the cis and the trans conformation. Thus, it seemed highly plausible that PPIase enzymatic activity is crucial for protein folding. However, this has been difficult to prove over the decades since their discovery. In parallel, more and more studies have discovered scaffolding functions of PPIases. This essay discusses the hypothesis that PPIase enzymatic activity might be the consequence of binding to peptidylprolyl protein motifs. The main focus of this paper is the large immunophilins FKBP51 and FKBP52, but other PPIases such as cyclophilin A and Pin1 are also described. From the hypothesis, it follows that the PPIase activity of these proteins might be less relevant, if at all, than the organization of protein complexes through versatile protein binding. Also see the video abstract here https://youtu.be/A33la0dx5LE.


Assuntos
Dobramento de Proteína , Proteínas de Ligação a Tacrolimo , Ciclofilinas , Ligação Proteica
6.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163662

RESUMO

The FK506-binding protein 52 (FKBP52) belongs to a large family of ubiquitously expressed and highly conserved proteins (FKBPs) that share an FKBP domain and possess Peptidyl-Prolyl Isomerase (PPIase) activity. PPIase activity catalyzes the isomerization of Peptidyl-Prolyl bonds and therefore influences target protein folding and function. FKBP52 is particularly abundant in the nervous system and is partially associated with the microtubule network in different cell types suggesting its implication in microtubule function. Various studies have focused on FKBP52, highlighting its importance in several neuronal microtubule-dependent signaling pathways and its possible implication in neurodegenerative diseases such as tauopathies (i.e., Alzheimer disease) and alpha-synucleinopathies (i.e., Parkinson disease). This review summarizes our current understanding of FKBP52 actions in the microtubule environment, its implication in neuronal signaling and function, its interactions with other members of the FKBPs family and its involvement in neurodegenerative disease.


Assuntos
Microtúbulos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Humanos , Agregados Proteicos
7.
J Pathol ; 245(1): 74-84, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29484655

RESUMO

Understanding the evolutionary mechanisms and genomic events leading to castration-resistant (CR) prostate cancer (PC) is key to improve the outcome of this otherwise deadly disease. Here, we delineated the tumour history of seven patients progressing to castration resistance by analysing matched prostate cancer tissues before and after castration. We performed genomic profiling of DNA content-based flow-sorted populations in order to define the different evolutionary patterns. In one patient, we discovered that a catastrophic genomic event, known as chromothripsis, resulted in multiple CRPC tumour populations with distinct, potentially advantageous copy number aberrations, including an amplification of FK506 binding protein 4 (FKBP4, also known as FKBP52), a protein enhancing the transcriptional activity of androgen receptor signalling. Analysis of FKBP4 protein expression in more than 500 prostate cancer samples revealed increased expression in CRPC in comparison to hormone-naïve (HN) PC. Moreover, elevated FKBP4 expression was associated with poor survival of patients with HNPC. We propose FKBP4 amplification and overexpression as a selective advantage in the process of tumour evolution and as a potential mechanism associated with the development of CRPC. Furthermore, FKBP4 interaction with androgen receptor may provide a potential therapeutic target in PC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Cromotripsia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Idoso , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
8.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661769

RESUMO

Previous studies demonstrated that the 52-kDa FK506-binding protein (FKBP52) proline-rich loop is functionally relevant in the regulation of steroid hormone receptor activity. While zebra fish (Danio rerio; Dr) FKBP52 contains all of the analogous domains and residues previously identified as critical for FKBP52 potentiation of receptor activity, it fails to potentiate activity. Thus, we used a cross-species comparative approach to assess the residues that are functionally critical for FKBP52 function. Random selection of gain-of-function DrFKBP52 mutants in Saccharomyces cerevisiae identified two critical residues, alanine 111 (A111) and threonine 157 (T157), for activation of receptor potentiation by DrFKBP52. In silico homology modeling suggests that alanine to valine substitution at position 111 in DrFKBP52 induces an open conformation of the proline-rich loop surface similar to that observed on human FKBP52, which may allow for sufficient surface area and increased hydrophobicity for interactions within the receptor-chaperone complex. A second mutation in the FKBP12-like domain 2 (FK2), threonine 157 to arginine (T157R), also enhanced potentiation, and the DrFKBP52-A111V/T157R double mutant potentiated receptor activity similar to human FKBP52. Collectively, these results confirm the functional importance of the FKBP52 proline-rich loop, suggest that an open conformation on the proline-rich loop surface is a predictor of activity, and highlight the importance of an additional residue within the FK2 domain.


Assuntos
Proteínas de Ligação a Tacrolimo/química , Proteínas de Peixe-Zebra/química , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Mutação com Ganho de Função , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Camundongos Knockout , Simulação de Dinâmica Molecular , Domínios Proteicos Ricos em Prolina/genética , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Proteins ; 86(1): 43-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29023988

RESUMO

As co-chaperones of the 90-kDa heat shock protein(HSP90), FK506 binding protein 51 (FKBP51) and FK506 binding protein 52 (FKBP52) modulate the maturation of steroid hormone receptor through their specific FK1 domains (FKBP12-like domain 1). The inhibitors targeting FK1 domains are potential therapies for endocrine-related physiological disorders. However, the structural conservation of the FK1 domains between FKBP51 and FKBP52 make it difficult to obtain satisfactory selectivity in FK506-based drug design. Fortunately, a series of iFit ligands synthesized by Hausch et al exhibited excellent selectivity for FKBP51, providing new opportunity for design selective inhibitors. We performed molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis to reveal selective mechanism for the inhibitor iFit4 binding with FKBP51 and FKBP52. The conformational stability evaluation of the "Phe67-in" and "Phe67-out" states implies that FKBP51 and FKBP52 have different preferences for "Phe67-in" and "Phe67-out" states, which we suggest as the determinant factor for the selectivity for FKBP51. The binding free energy calculations demonstrate that nonpolar interaction is favorable for the inhibitors binding, while the polar interaction and entropy contribution are adverse for the inhibitors binding. According to the results from binding free energy decomposition, the electrostatic difference of residue 85 causes the most significant thermodynamics effects on the binding of iFit4 to FKBP51 and FKBP52. Furthermore, the importance of substructure units on iFit4 were further evaluated by unbinding pathway analysis and residue-residue contact analysis between iFit4 and the proteins. The results will provide new clues for the design of selective inhibitors for FKBP51.


Assuntos
Simulação de Dinâmica Molecular , Proteínas de Ligação a Tacrolimo/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Termodinâmica
10.
Int J Mol Sci ; 20(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585227

RESUMO

The hypothalamus-pituitary-adrenal (HPA) axis directly controls the stress response. Dysregulation of this neuroendocrine system is a common feature among psychiatric disorders. Steroid hormone receptors, like glucocorticoid receptor (GR), function as transcription factors of a diverse set of genes upon activation. This activity is regulated by molecular chaperone heterocomplexes. Much is known about the structure and function of these GR/heterocomplexes. There is strong evidence suggesting altered regulation of steroid receptor hormones by chaperones, particularly the 51 kDa FK506-binding protein (FKBP51), may work with environmental factors to increase susceptibility to various psychiatric illnesses including post-traumatic stress disorder (PTSD), major depressive disorder (MDD), and anxiety. This review highlights the regulation of steroid receptor dynamics by the 90kDa heat shock protein (Hsp90)/cochaperone heterocomplexes with an in depth look at how the structural regulation and imbalances in cochaperones can cause functional effects on GR activity. Links between the stress response and circadian systems and the development of novel chaperone-targeting therapeutics are also discussed.


Assuntos
Transtorno Depressivo Maior/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Receptores de Esteroides/metabolismo , Ritmo Circadiano , Ciclofilinas/metabolismo , Transtorno Depressivo Maior/metabolismo , Glicoproteínas/metabolismo , Humanos , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/metabolismo
11.
Biochem J ; 473(20): 3517-3532, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27503910

RESUMO

Telomerase is a unique ribonucleoprotein enzyme that is required for continued cell proliferation. To generate catalytically active telomerase, human telomerase reverse transcriptase (hTERT) must translocate to the nucleus and assemble with the RNA component of telomerase. The molecular chaperones heat shock protein 90 (Hsp90) and p23 maintain hTERT in a conformation that enables nuclear translocation. However, the regulatory role of chaperones in nuclear transport of hTERT remains unclear. In this work, we demonstrate that immunophilin FK506-binding protein (FKBP)52 linked the hTERT-Hsp90 complex to the dynein-dynactin motor, thereby promoting the transport of hTERT to the nucleus along microtubules. FKBP52 interacted with the hTERT-Hsp90 complex through binding of the tetratricopeptide repeat domain to Hsp90 and binding of the dynamitin (Dyt) component of the dynein-associated dynactin complex to the peptidyl prolyl isomerase domain. The depletion of FKBP52 inhibited nuclear transport of hTERT, resulting in cytoplasmic accumulation. Cytoplasmic hTERT was rapidly degraded through ubiquitin (Ub)-dependent proteolysis, thereby abrogating telomerase activity. In addition, overexpression of dynamitin, which is known to dissociate the dynein-dynactin motor from its cargoes, reduced telomerase activity. Collectively, these results provide a molecular mechanism by which FKBP52 modulates telomerase activity by promoting dynein-dynactin-dependent nuclear import of hTERT.


Assuntos
Citoplasma/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Telomerase/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteínas de Choque Térmico HSP90/genética , Humanos , Immunoblotting , Imunoprecipitação , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Interferência de RNA , Proteínas de Ligação a Tacrolimo/genética , Telomerase/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação/genética , Ubiquitinação/fisiologia
12.
Int J Cancer ; 138(4): 797-808, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25754838

RESUMO

Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the 90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-kinases, oncogenes, protein phosphatases, transcription factors and cofactors . Hsp90-binding immunophilins where first characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immunophilins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for therapeutic purposes as potential targets of specific small molecules.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Imunofilinas/metabolismo , Neoplasias/metabolismo , Animais , Humanos
13.
J Biol Chem ; 289(22): 15297-308, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24753260

RESUMO

Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity.


Assuntos
Proteínas de Transporte/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
J Biol Chem ; 289(38): 26263-26276, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25104352

RESUMO

Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity. The inhibitory action of FKBP51 requires neither the peptidylprolyl-isomerase activity of the immunophilin nor its association with Hsp90. The TPR domain of FKBP51 is essential. On the other hand, FKBP52 favors the nuclear retention time of RelA, its association to a DNA consensus binding sequence, and NF-κB transcriptional activity, the latter effect being strongly dependent on the peptidylprolyl-isomerase activity and also on the TPR domain of FKBP52, but its interaction with Hsp90 is not required. In unstimulated cells, FKBP51 forms endogenous complexes with cytoplasmic RelA. Upon cell stimulation with phorbol ester, the NF-κB soluble complex exchanges FKBP51 for FKBP52, and the NF-κB biological effect is triggered. Importantly, FKBP52 is functionally recruited to the promoter region of NF-κB target genes, whereas FKBP51 is released. Competition assays demonstrated that both immunophilins antagonize one another, and binding assays with purified proteins suggest that the association of RelA and immunophilins could be direct. These observations suggest that the biological action of NF-κB in different cell types could be positively regulated by a high FKBP52/FKBP51 expression ratio by favoring NF-κB nuclear retention, recruitment to the promoter regions of target genes, and transcriptional activity.


Assuntos
Proteínas de Ligação a Tacrolimo/fisiologia , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Ativação Transcricional
15.
Bioorg Med Chem Lett ; 24(2): 661-6, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24360559

RESUMO

When a cell encounters external stressors, such as lack of nutrients, elevated temperatures, changes in pH or other stressful environments, a key set of evolutionarily conserved proteins, the heat shock proteins (hsps), become overexpressed. Hsps are classified into six major families with the hsp90 family being the best understood; an increase in cell stress leads to increased levels of hsp90, which leads to cellular protection. A hallmark of hsp90 inhibitors is that they induce a cell rescue mechanism, the heat shock response. We define the unique molecular profile of a compound (SM145) that regulates hormone receptor protein levels through hsp90 inhibition without inducing the heat shock response. Modulation of the binding event between heat shock protein 90 and the immunophilins/homologs using SM145, leads to a decrease in hormone receptor protein levels. Unlike N-terminal hsp90 inhibitors, this hsp90 inhibitor does not induce a heat shock response. This work is proof of principle that controlling hormone receptor expression can occur by inhibiting hsp90 without inducing pro-survival protein heat shock protein 70 (hsp70) or other proteins associated with the heat shock response. Innovatively, we show that blocking the heat shock response, in addition to hsp90, is key to regulating hsp90-associated pathways.


Assuntos
Benzoquinonas/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico/fisiologia , Imunofilinas/fisiologia , Lactamas Macrocíclicas/química , Receptores de Superfície Celular/fisiologia , Animais , Benzoquinonas/farmacologia , Relação Dose-Resposta a Droga , Resposta ao Choque Térmico/efeitos dos fármacos , Lactamas Macrocíclicas/farmacologia , Ligação Proteica/fisiologia , Coelhos
16.
Front Cell Neurosci ; 18: 1425222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119047

RESUMO

The failure of the autophagy-lysosomal pathway to clear the pathogenic forms of Tau exacerbates the pathogenesis of tauopathies. We have previously shown that the immunophilin FKBP52 interacts both physically and functionally with Tau, and that a decrease in FKBP52 protein levels is associated with Tau deposition in affected human brains. We have also shown that FKBP52 is physiologically present within the lysosomal system in healthy human neurons and that a decrease in FKBP52 expression alters perinuclear lysosomal positioning and Tau clearance during Tau-induced proteotoxic stress in vitro. In this study, we generate a zebrafish fkbp4 loss of function mutant and show that axonal retrograde trafficking of Lamp1 vesicles is altered in this mutant. Moreover, using our transgenic HuC::mCherry-EGFP-LC3 line, we demonstrate that the autophagic flux is impaired in fkbp4 mutant embryos, suggesting a role for Fkbp52 in the maturation of autophagic vesicles. Alterations in both axonal transport and autophagic flux are more evident in heterozygous rather than homozygous fkbp4 mutants. Finally, taking advantage of the previously described A152T-Tau transgenic fish, we show that the clearance of pathogenic A152T-Tau mutant proteins is slower in fkbp4 +/- mutants in comparison to fkbp4 +/+ larvae. Altogether, these results indicate that Fkbp52 is required for the normal trafficking and maturation of lysosomes and autophagic vacuoles along axons, and that its decrease is sufficient to hinder the clearance of pathogenic Tau in vivo.

17.
J Econ Entomol ; 117(3): 1130-1140, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579138

RESUMO

Metarhizium anisopliae is an important class of entomopathogenic fungi used for the biocontrol of insects, but its virulence is affected by insect immunity. We identified a novel FK506 binding protein gene that was differentially expressed between control and Metarhizium-treated Locusta migratoria manilensis. We hypothesized that this protein played an important role in Metarhizium infection of L. migratoria and could provide new insights for developing highly efficient entomopathogenic fungi. We, therefore, cloned the specific gene and obtained its purified protein. The gene was then named FKBP52, and its dsRNA (dsFKBP52) was synthesized and used for gene interference. Bioassay results showed that the mortality of L. migratoria treated with dsFKBP52 + Metarhizium was significantly lower than that of other treatments. Furthermore, immune-related genes (MyD88, Dorsal, Cactus, and Defensin) in L. migratoria treated with dsFKBP52 + Metarhizium showed significant upregulation compared to that treated with Metarhizium only. However, the activities of peroxidase (POD), superoxide dismutase (SOD), and calcineurin (CaN) showed fluctuations. These results suggest that the FKBP52 gene may play a crucial role in the innate immunity of L. migratoria. The effect of its silencing indicated that this immunity-related protein might be a potential target for insect biocontrol.


Assuntos
Proteínas de Insetos , Locusta migratoria , Metarhizium , Proteínas de Ligação a Tacrolimo , Animais , Locusta migratoria/genética , Locusta migratoria/imunologia , Metarhizium/fisiologia , Metarhizium/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Controle Biológico de Vetores , Imunidade Inata , Sequência de Aminoácidos
18.
Eur J Med Chem ; 270: 116356, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579621

RESUMO

The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas de Ligação a Tacrolimo , Humanos , Ligação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares , Fatores de Transcrição/metabolismo
19.
Mol Cell Endocrinol ; 577: 112047, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604241

RESUMO

The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins. The model shows that upon steroid binding, FKBP52 is recruited to the GR allowing its active retrograde transport on cytoskeletal tracks. Then, the entire GR heterocomplex translocates through the nuclear pore complex. The HSP90-based heterocomplex is released in the nucleoplasm followed by receptor dimerization. Subsequent findings demonstrated that the transportosome is also responsible for the retrotransport of other soluble proteins. Importantly, the disruption of this molecular oligomer leads to several diseases. In this article, we discuss the relevance of this transport machinery in health and disease.

20.
Chronobiol Int ; 40(8): 1004-1027, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548004

RESUMO

Environmental factors, such as sleep restriction, contribute to polycystic ovary syndrome (PCOS) by causing hyperinsulinemia, hyperandrogenism, insulin resistance, and oligo- or anovulation. This study aimed to evaluate the effects of circadian rhythm disruption on reproductive and metabolic functions and investigate the potential therapeutic benefits of MitoQ10 and hot tub therapy (HTT). Sixty female rats were divided into six groups: control, MitoQ10, HTT, and three groups with PCOS induced by continuous light exposure(L/L). The reproductive, endocrine, and structural manifestations ofL/L-induced PCOS were confirmed by serum biochemical measurements, ultrasound evaluation of ovarian size, and vaginal smear examination at week 14. Subsequently, the rats were divided into the L/L (untreated), L/L+MitoQ10-treated, andL/L+HTT-treated groups. At the end of week 22, all rats were sacrificed. Treatmentwith MitoQ10 or HTT partially reversed the reproductive, endocrine, and structural features of PCOS, leading to a decreased amplitude of isolated uterine contractions, ovarian cystic changes and size, and endometrial thickness. Furthermore, both interventions improved the elevated serum levels of anti-Mullerian hormone (AMH), kisspeptin, Fibulin-1, A disintegrin and metalloproteinase with thrombospondin motifs 19 (ADAMTS-19), lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR), oxidative stress markers, androgen receptors (AR) and their transcription target genes, FKBP52 immunostaining in ovarian tissues, and uterine estrogen receptor alpha (ER-α) and PRimmunostaining. In conclusion, MitoQ10 supplementation and HTT demonstrated the potential for ameliorating metabolic, reproductive, and structural perturbations associated with PCOS induced by circadian rhythm disruption. These findings suggest a potential therapeutic role for these interventions in managing PCOS in women.


Assuntos
Hiperandrogenismo , Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/terapia , Temperatura Alta , Ritmo Circadiano , Hiperandrogenismo/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA