Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Inhal Toxicol ; 35(1-2): 48-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36648028

RESUMO

Aim: Polycrystalline wools (PCW) are included with Refractory ceramic fibers (RCF) in the alumino-silicates family of High Temperature Insulation Wools (HTIW). IARC includes PCW in the ceramic fibers group and considers them as possible human carcinogens (GROUP 2B). Since PCW toxicity is not yet clear, our aim was to evaluate their toxic and inflammatory effects and to compare them with the known RCF effects.Method: We exposed human bronchial (BEAS-2B) and alveolar (A549) cells to 2-100 µg/mL (2.4 × 103-1.2 × 105 fibers/mL; 2.51 × 103-1.26 × 105 fibers/cm2 of PCW and 7.4 × 103-3.7 × 105 fibers/mL; 7.75 × 103-3.87 × 105 fibers/cm2 of RCF) of the tested fibers to evaluate potential viability reduction, apoptosis, membrane damage, direct/oxidative DNA-damage, cytokine release.Results: In A549, PCW did not induce cytotoxicity and apoptosis but they induced significant dose-dependent DNA-damage, although lower than RCF; only RCF induced oxidative effects. PCW also induced an increase in IL-6 release at 100 µg/mL (1.2 × 105 fibers/mL; 1.26 × 105 fibers/cm2). In BEAS-2B, PCW did not induce cell-viability reduction RCF induced a dose-dependent cell-viability decrease. Both fibers show a dose-dependent increase of apoptosis. In BEAS-2B, PCW also induced dose-dependent DNA-damage, although lower than RCF, and slight oxidative effects similar to RCF. PCW also induced an increase of IL-6 release; RCF induced a decrease of IL-8. Summarizing, PCW induce direct-oxidative DNA-damage although to a lower extent than RCF observed by both mass-based and fiber number-based analysis.Conclusion: For the first time, the study shows the potential toxicity of PCW, usually considered safe, and suggests to perform further in vitro studies, also on other cell types, to confirm these findings.


Assuntos
Cerâmica , Dano ao DNA , Pulmão , Humanos , Brônquios , Citocinas/metabolismo , Interleucina-6/metabolismo , Cerâmica/toxicidade , Células A549
2.
Toxicology ; 466: 153085, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34968639

RESUMO

Formaldehyde mainly emitted from wood adhesives, finishing materials, paint for furniture represents, together with wood dust, a potential carcinogenic risk for wood workers. Aims of this multidisciplinary study are to investigate the possibility of replacing urea-formaldehyde (UF) adhesives in the wood industry with organic and/or inorganic-based glues to obtain a final less toxic product and to evaluate the potential toxicity of wood glued with such new adhesives. For this purpose we selected poplar wood to test an organic new adhesive HBP (Hemp Based Protein), a mixture of hemp flour and cross-linker PAE (polyaminoamide epichlorohydrin), and spruce wood to test an inorganic adhesive geopolymer K-PSS (potassium-polysiloxosialate) plus polyvinyl acetate. For the poplar wood, we also used a commercial panel glued with UF for comparison. We reproduced occupational inhalation exposure during sawing activities of mentioned woods, collected and characterized the wood dusts emitted during sawing and evaluated in vitro their potential cyto-genotoxic and inflammatory effects. We used human lung cells (A549) exposed for 24 h to 20 and 100 µg/mL of collected PM2.5 wood dust. We found that both the new adhesives wood dusts induced a slightly higher apoptotic effect than untreated natural wood dusts particularly in spruce wood. Only geopolymer K-PSS wood dust induced membrane damage at the highest concentration and direct and oxidative DNA damage that could be explained by the different chemical composition and the lower particle sizes in respect to organic HBP adhesive wood dust. We found slight induction of IL-6 release, not influenced by K-PSS treatment, at the highest concentration in spruce wood. For poplar wood, IL-6 and IL-8 induction was found particularly for untreated and UF-treated wood at the highest concentration, where hemp adhesive treatment induced lower inflammation while at lower concentration similar slight cytokine induction was found for all tested wood dusts. This preliminary study shows that natural adhesives used to replace UF adhesives represent an interesting alternative, particularly the organic hemp-based adhesive showing very low toxicity.


Assuntos
Adesivos/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Membrana Celular/efeitos dos fármacos , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Poeira/análise , Madeira , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação , Exposição por Inalação , Pesquisa Interdisciplinar , Modelos Teóricos , Exposição Ocupacional , Tamanho da Partícula , Testes de Toxicidade/métodos
3.
Nanotoxicology ; 16(6-8): 776-790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36427224

RESUMO

During nanomaterial (NM) production, workers could be exposed, particularly by inhalation, to NMs and other chemicals used in the synthesis process, so it is important to have suitable biomarkers to monitor potential toxic effects. Aim of this study was to evaluate the effectiveness of the introduction of exposure mitigation measures on workers unintentionally exposed to graphene co-pollutants during production process monitoring the presumable reduction of workplace NM contamination and of early genotoxic and oxidative effects previously found on these workers. We used Buccal Micronucleus Cytome (BMCyt) assay and Fpg-comet test, resulted the most sensitive biomarkers on our first biomonitoring work, to measure the genotoxic effects. We also detected urinary oxidized nucleic acid bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo to evaluate oxidative damage. The genotoxic and oxidative effects were assessed on the same graphene workers (N = 6) previously studied, comparing the results with those found in the first biomonitoring and with the control group (N = 11). This was achieved 6 months after the installation of a special filter hood (where to perform the phases at higher risk of NM emission) and the improvement of environmental and personal protective equipment. Particle number concentration decreased after the mitigation measures. We observed reduction of Micronucleus (MN) frequency and oxidative DNA damage and increase of 8-oxodGuo excretion compared to the first biomonitoring. These results, although limited by the small subject number, showed the efficacy of adopted exposure mitigation measures and the suitability of used sensitive and noninvasive biomarkers to bio-monitor over time workers involved in graphene production process.


Assuntos
Grafite , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Seguimentos , Grafite/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Testes para Micronúcleos/métodos , Biomarcadores , Dano ao DNA , Estresse Oxidativo , Ensaio Cometa
4.
Nanotoxicology ; 15(2): 223-237, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33373530

RESUMO

The available biomonitoring studies on workers producing/handling nanomaterials (NMs) focused on potential effects on respiratory, immune and cardio-vascular system. Aim of this study was to identify a panel of sensitive biomarkers and suitable biological matrices to evaluate particularly genotoxic and oxidative effects induced on workers unintentionally exposed to graphene or silica nanoparticles during the production process. These nanomaterials have been chosen for 'NanoKey' project, integrating the workplace exposure assessment (reported in part I) with the biomonitoring of exposed workers reported in the present work. Simultaneously to workplace exposure characterization, we monitored the workers using: Buccal Micronucleus Cytome (BMCyt) assay, fpg-comet test (lymphocytes), oxidized DNA bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo measurements (urine), analysis of oxidative stress biomarkers in exhaled breath condensate (EBC), FENO measurement and cytokines release detection (serum). Since buccal cells are among the main targets of NM occupational exposure, particular attention was posed to the BMCyt assay that represents a noninvasive assay. This pilot study, performed on 12 workers vs.11 controls, demonstrates that BMCyt and fpg-comet assays are the most sensitive biomarkers of early, still reparable, genotoxic and oxidative effects. The findings suggest that these biomarkers could represent useful tools for the biomonitoring of workers exposed to nanoparticles, but they need to be confirmed on a high number of subjects. However, such biomarkers don't discriminate the effects of NM from those due to other chemicals used in the NM production process. Therefore, they could be suitable for the biomonitoring of workers exposed to complex scenario, including nanoparticles exposure.


Assuntos
Dano ao DNA , Grafite/toxicidade , Mucosa Bucal/efeitos dos fármacos , Nanopartículas/toxicidade , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/toxicidade , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Ensaio Cometa , Citocinas/metabolismo , Feminino , Grafite/administração & dosagem , Humanos , Inflamação , Masculino , Testes para Micronúcleos , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Nanopartículas/administração & dosagem , Exposição Ocupacional/análise , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Projetos Piloto , Dióxido de Silício/administração & dosagem , Local de Trabalho/normas
5.
Artigo em Inglês | MEDLINE | ID: mdl-33925554

RESUMO

This study aimed to identify sensitive and noninvasive biomarkers of early cyto-genotoxic, oxidative and inflammatory effects for exposure to volatile organic compounds (VOCs) in shipyard painters. On 17 (11 spray and 6 roller) painters (previously characterized for VOCs exposure to toluene, xylenes, ethylbenzene, ethyl acetate) and on 18 controls, we performed buccal micronucleus cytome (BMCyt) assay; Fpg-comet assay on lymphocytes; detection of urinary 8-oxoGua (8-oxo-7,8-dihydroguanine), 8-oxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) and 8-oxoGuo (8-oxo-7,8-dihydroguanosine), and cytokines release on serum. We found induction of cyto-genotoxicity by BMCyt assay and inflammatory effects (IL-6 and TNFα) in roller painters exposed to lower VOC concentrations than spray painters. In contrast, in both worker groups, we found direct and oxidative DNA damage by comet assay (with slightly higher oxidative DNA damage in roller) and significant increase of 8-oxoGuo and decrease of 8-oxodGuo and 8-oxoGua in respect to controls. The cyto-genotoxicity observed only on buccal cells of roller painters could be related to the task's specificity and the different used protective equipment. Although limited by the small number of subjects, the study shows the usefulness of all the used biomarkers in the risk assessment of painters workers exposed to complex mixtures.


Assuntos
Mucosa Bucal , Exposição Ocupacional , Biomarcadores/metabolismo , Ensaio Cometa , Dano ao DNA , Humanos , Mucosa Bucal/metabolismo , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estresse Oxidativo
6.
Toxicol In Vitro ; 59: 228-237, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31002973

RESUMO

Biosoluble AES wools are increasingly used since considered not hazardous, however, few toxicity studies are available. We evaluated cytotoxic, genotoxic-oxidative and inflammatory effects of two differently soluble AES wools, AES1 (high MgO percentage) and AES2 (high CaO percentage), on alveolar (A549) and bronchial (BEAS-2B) cells. Fiber dimensions and dissolution in cell media were evaluated by SEM analysis. Cell viability, LDH release, direct/oxidative DNA damage (fpg-comet assay) and IL-6, IL-8 and TNF-α release (ELISA), were analysed after 24 h exposure to 2-200 µg/ml. On A549 cells AES1 induced LDH release, slight direct DNA damage and oxidative DNA damage with very high IL-6 release at 100 µg/ml; AES2 induced higher DNA damage than AES1 and slight oxidative DNA damage. On BEAS-2B cells we found direct DNA damage (higher for AES1) and slight oxidative DNA damage (associated to slight increased IL-6 and IL-8 release for AES1). The higher genotoxicity of more soluble AES2 on A549 cells could be explained by higher respirable fibers % and fiber number/µg found after 24 h in RPMI-medium at 100 µg/ml. The higher membrane damage, oxidative DNA damage and inflammation induced by AES1 in A549 cells could be due to the higher DLG and silica percentage. These findings suggest further investigations on AES toxicity.


Assuntos
Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Alvéolos Pulmonares/citologia , Silicatos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Citocinas/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
Toxicol Lett ; 298: 53-59, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898417

RESUMO

This study aimed to identify sensitive and not-invasive biomarkers of early genotoxic/oxidative effect for exposure to styrene in the fibreglass reinforced plastic manufacture. We studied 11 workers of a plastic manufacture using open molding process (A), 16 workers of a manufacture using closed process (B) and 12 controls. We evaluated geno/cytotoxic effects on buccal cells by Buccal Micronucleus Cytome (BMCyt) assay and genotoxic/oxidative effects on lymphocytes by Fpg-comet test. On A workers we also evaluated urinary 8oxoGua, 8oxodGuo and 8oxoGuo to investigate oxidative stress. Personal inhalation exposure to styrene was monitored by passive air sampling and GC/MS. Biological monitoring included urinary metabolites mandelic acid (MA) and phenylglyoxylic acid (PGA). The findings show higher styrene exposure, urinary MA + PGA levels and micronucleus frequency in manufacture A. Higher buccal karyolytic cell frequency vs controls were found in both exposed populations. We found in exposed workers, no induction of direct DNA damage but oxidative DNA damage. Fpg-comet assay and urinary oxidized guanine seem to be sensitive biomarkers of oxidative stress and BMCyt assay a good-not invasive biomarker of cyto-genotoxicity at target organ. The study, although limited by the small number of studied subjects, shows the usefulness of used biomarkers in risk assessment of styrene-exposed workers.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Dano ao DNA , Monitoramento Ambiental/métodos , Vidro , Linfócitos/efeitos dos fármacos , Indústria Manufatureira , Mucosa Bucal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estireno/efeitos adversos , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Estudos de Casos e Controles , Ensaio Cometa , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Biomarcadores Ambientais , Feminino , Guanina/análogos & derivados , Guanina/urina , Guanosina/análogos & derivados , Guanosina/urina , Humanos , Exposição por Inalação/efeitos adversos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Pessoa de Meia-Idade , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional , Projetos Piloto , Reprodutibilidade dos Testes , Medição de Risco , Urinálise
8.
Nanomedicine (Lond) ; 9(9): 1423-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24367968

RESUMO

BACKGROUND: The use of metal oxide nanoparticles (titanium dioxide) in consumer and industrial products improves their quality but also underscores the possible adverse effects to human and environmental health. MATERIALS & METHODS: Mice were exposed orally for 14 consecutive days and analyzed for alteration in different hepatic enzymes, histopathological changes, oxidative stress, DNA damage, tumor suppressor and proapoptotic protein expression in liver cells. RESULTS: We observed a significant alteration in the level of hepatic enzymes and liver histopathology at a dose of 100 mg/kg body weight. Significant oxidative DNA damage was observed in liver cells, which could be attributed to oxidative stress. In addition, the increased expression of p53, BAX, caspase-3 and -9 proteins and decreased expression of antiapoptotic protein Bcl-2, suggest activation of the intrinsic pathway of apoptosis. CONCLUSION: High accumulation of titanium dioxide nanoparticles in the liver tissue would cause DNA damage and apoptosis through the intrinsic pathway.


Assuntos
Dano ao DNA , Fígado/efeitos dos fármacos , Fígado/lesões , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Administração Oral , Animais , Proteínas de Choque Térmico/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Camundongos , Testes para Micronúcleos , Nanomedicina , Estresse Oxidativo/efeitos dos fármacos , Titânio/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA