RESUMO
BACKGROUND: Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS: Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS: Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS: These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.
Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Transtornos Parkinsonianos , Camundongos , Animais , Levodopa/efeitos adversos , Dopamina , Serotonina , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Doença de Parkinson/etiologia , Doença de Parkinson/tratamento farmacológico , BiomarcadoresRESUMO
The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides. Here, we employ the modified sawhorse waveform (MSW) to enable voltammetric identification of NPY through tyrosine oxidation. Use of MSW improves NPY detection sensitivity and selectivity by reducing interference from catecholamines like dopamine, serotonin, and others compared to the traditional triangle waveform. The technique utilizes a holding potential of -0.2 V and a switching potential of 1.2 V that effectively etches and renews the CFME surface to simultaneously detect NPY and other monoamines with a sensitivity of 5.8 ± 0.94 nA/µM (n = 5). Furthermore, we observed adsorption-controlled, subsecond NPY measurements with CFMEs and MSW. The effective identification of exogenously applied NPY in biological fluids demonstrates the feasibility of this methodology for in vivo and ex vivo studies. These results highlight the potential of MSW voltammetry to enable fast, biocompatible NPY quantification to further elucidate its physiological roles.
Assuntos
Técnicas Eletroquímicas , Neuropeptídeo Y , Neuropeptídeo Y/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Microeletrodos , Humanos , Oxirredução , Fibra de Carbono/química , Tirosina/análise , Tirosina/química , AnimaisRESUMO
This study aims to develop a microelectrode array-based neural probe that can record dopamine activity with high stability and sensitivity. To mimic the high stability of the gold standard method (carbon fiber electrodes), the microfabricated platinum microelectrode is coated with carbon-based nanomaterials. Carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) and carbon quantum dots (CQDs) were selected for this purpose, while a conductive polymer like poly (3-4-ethylene dioxythiophene) (PEDOT) or polypyrrole (PPy) serves as a stable interface between the platinum of the electrode and the carbon-based nanomaterials through a co-electrodeposition process. Based on our comparison between different conducting polymers and the addition of CQD, the CNT-CQD-PPy modified microelectrode outperforms its counterparts: CNT-CQD-PEDOT, CNT-PPy, CNT-PEDOT, and bare Pt microelectrode. The CNT-CQD-PPy modified microelectrode has a higher conductivity, stability, and sensitivity while achieving a remarkable limit of detection (LOD) of 35.20 ± 0.77 nM. Using fast-scan cyclic voltammetry (FSCV), these modified electrodes successfully measured dopamine's redox peaks while exhibiting consistent and reliable responses over extensive use. This electrode modification not only paves the way for real-time, precise dopamine sensing using microfabricated electrodes but also offers a novel electrochemical sensor for in vivo studies of neural network dynamics and neurological disorders.
RESUMO
Implantable electrochemical sensors enable fast and sensitive detection of analytes in biological tissue, but are hampered by bio-foulant attack and are unable to be recalibrated in-situ. Herein, an electrochemical sensor integrated into ultra-low flow (nL/min) silicon microfluidic channels for protection from foulants and in-situ calibration is demonstrated. The small footprint (5 µm radius channel cross-section) of the device allows its integration into implantable sampling probes for monitoring chemical concentrations in biological tissues. The device is designed for fast scan cyclic voltammetry (FSCV) in the thin-layer regime when analyte depletion at the electrode is efficiently compensated by microfluidic flow. A 3X enhancement of faradaic peak currents is observed due to the increased flux of analytes towards the electrodes. Numerical analysis of in-channel analyte concentration confirmed near complete electrolysis in the thin-layer regime below 10 nL/min. The manufacturing approach is highly scalable and reproducible as it utilizes standard silicon microfabrication technologies.
RESUMO
Obesity is a pandemic caused by many factors, including a chronic excess in hypercaloric and high-palatable food intake. In addition, the global prevalence of obesity has increased in all age categories, such as children, adolescents, and adults. However, at the neurobiological level, how neural circuits regulate the hedonic consumption of food intake and how the reward circuit is modified under hypercaloric diet consumption are still being unraveled. We aimed to determine the molecular and functional changes of dopaminergic and glutamatergic modulation of nucleus accumbens (NAcc) in male rats exposed to chronic consumption of a high-fat diet (HFD). Male Sprague-Dawley rats were fed a chow diet or HFD from postnatal day (PND) 21 to 62, increasing obesity markers. In addition, in HFD rats, the frequency but not amplitude of the spontaneous excitatory postsynaptic current is increased in NAcc medium spiny neurons (MSNs). Moreover, only MSNs expressing dopamine (DA) receptor type 2 (D2) increase the amplitude and glutamate release in response to amphetamine, downregulating the indirect pathway. Furthermore, NAcc gene expression of inflammasome components is increased by chronic exposure to HFD. At the neurochemical level, DOPAC content and tonic dopamine (DA) release are reduced in NAcc, while phasic DA release is increased in HFD-fed rats. In conclusion, our model of childhood and adolescent obesity functionally affects the NAcc, a brain nucleus involved in the hedonic control of feeding, which might trigger addictive-like behaviors for obesogenic foods and, through positive feedback, maintain the obese phenotype.
Assuntos
Dopamina , Obesidade Infantil , Ratos , Masculino , Animais , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Dieta Hiperlipídica , Ratos Sprague-Dawley , Obesidade Infantil/metabolismo , Transmissão Sináptica/fisiologia , Receptores Dopaminérgicos/metabolismoRESUMO
Commonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.
Assuntos
Citalopram/farmacologia , Hipocampo/efeitos dos fármacos , Histamina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.
Assuntos
Histamina , Receptores Histamínicos H3 , Feminino , Animais , Masculino , Camundongos , Histamina/metabolismo , Serotonina/metabolismo , Receptores Histamínicos H3/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/metabolismo , Encéfalo/metabolismoRESUMO
Early life exposure to sex hormones affects several brain areas involved in regulating locomotor and motivation behaviors. Our group has shown that neonatal exposure to testosterone propionate (TP) or estradiol valerate (EV) affected the brain dopamine (DA) system in adulthood. Here, we studied the long-lasting effects of neonatal exposure to sex hormones on behavioral and neurochemical responses to amphetamine (AMPH) and methylphenidate (MPD). Our results show that AMPH-induced locomotor activity was higher in female than male control rats. The conditioned place preference (CPP) to AMPH was only observed in EV male rats. In EV female rats, AMPH did not increase locomotor activity, but MPD-induced CPP was observed in control, EV and TP female rats. Using in vivo brain microdialysis, we observed that AMPH-induced extracellular DA levels were lower in nucleus accumbens (NAcc) of EV and TP female rats than control rats. In addition, MPD did not increase NAcc extracellular DA levels in EV rats. Using in vivo fast-scan cyclic voltammetry in striatum, MPD-induced DA reuptake was higher in EV than control rats. In summary, our results show that early life exposure to sex hormones modulates mesolimbic and nigrostriatal DA neurons producing opposite neurochemical effects induced by psychostimulant drugs in NAcc or striatum.
Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Transtornos Relacionados ao Uso de Substâncias , Propionato de Testosterona , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/farmacologia , Estradiol/farmacologia , Feminino , Masculino , Metilfenidato/farmacologia , Atividade Motora , Núcleo Accumbens , RatosRESUMO
The vascular contributions of neurotransmitters to the hemodynamic response are gaining more attention in neuroimaging studies, as many neurotransmitters are vasomodulatory. To date, well-established electrochemical techniques that detect neurotransmission in high magnetic field environments are limited. Here, we propose an experimental setting enabling simultaneous fast-scan cyclic voltammetry (FSCV) and blood oxygenation level-dependent functional magnetic imaging (BOLD fMRI) to measure both local tissue oxygen and dopamine responses, and global BOLD changes, respectively. By using MR-compatible materials and the proposed data acquisition schemes, FSCV detected physiological analyte concentrations with high temporal resolution and spatial specificity inside of a 9.4 T MRI bore. We found that tissue oxygen and BOLD correlate strongly, and brain regions that encode dopamine amplitude differences can be identified via modeling simultaneously acquired dopamine FSCV and BOLD fMRI time-courses. This technique provides complementary neurochemical and hemodynamic information and expands the scope of studying the influence of local neurotransmitter release over the entire brain.
Assuntos
Encéfalo/diagnóstico por imagem , Técnicas Eletroquímicas/métodos , Imageamento por Ressonância Magnética/métodos , Neurotransmissores/fisiologia , Oxigênio , Animais , Masculino , Neuroimagem , Ratos , Transmissão SinápticaRESUMO
Carbon fiber microelectrodes (CFMEs) have been extensively used to measure neurotransmitters with fast-scan cyclic voltammetry (FSCV) due to their ability to adsorb cationic monoamine neurotransmitters. Although FSCV, in tandem with CFMEs, provides high temporal and spatial resolution, only single-channel potentiostats and electrodes have been primarily utilized. More recently, the need and use of carbon fiber multielectrode arrays has risen to target multiple brain regions. Previous studies have shown the ability to detect dopamine using multielectrode arrays; however, they are not readily available to the scientific community. In this work, we interfaced a carbon fiber multielectrode array (MEA or multielectrode array), to a commercially available four-channel potentiostat for multiplexing neurochemical measurements. The MEA's relative performance was compared to single CFMEs where dopamine detection was found to be adsorption controlled to the electrode's surface. Multiple waveforms were applied to each fiber of the multielectrode array simultaneously to detect different analytes on each electrode of the array. A proof of concept ex vivo experiment showed that the multielectrode array could record redox activity in different areas within the mouse caudate putamen and detect dopamine in a 3-mm2 area. To our knowledge, this is the first use of the multielectrode array paired with a commercially available multichannel potentiostat for multi-waveform application and neurotransmitter co-detection. This novel array may aid in future studies to better understand complex brain heterogeneity, the dynamic neurochemical environment, and how disease states or drugs affect separate brain areas concurrently. Graphical abstract.
Assuntos
Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Neurotransmissores/análise , Adenosina/análise , Animais , Calibragem , Fibra de Carbono , Corpo Estriado/metabolismo , Dopamina/análise , Dopamina/metabolismo , Desenho de Equipamento , Camundongos Endogâmicos C57BL , Microeletrodos , Serotonina/análise , Serotonina/metabolismoRESUMO
The relationship between neuronal impulse activity and neurotransmitter release remains elusive. This issue is especially poorly understood in the neuroendocrine system, with its particular demands on periodically voluminous release of neurohormones at the interface of axon terminals and vasculature. A shortage of techniques with sufficient temporal resolution has hindered real-time monitoring of the secretion of the peptides that dominate among the neurohormones. The lactotropic axis provides an important exception in neurochemical identity, however, as pituitary prolactin secretion is primarily under monoaminergic control, via tuberoinfundibular dopamine (TIDA) neurons projecting to the median eminence (ME). Here, we combined electrical or optogenetic stimulation and fast-scan cyclic voltammetry to address dopamine release dynamics in the male mouse TIDA system. Imposing different discharge frequencies during brief (3 s) stimulation of TIDA terminals in the ME revealed that dopamine output is maximal at 10 Hz, which was found to parallel the TIDA neuron action potential frequency distribution during phasic discharge. Over more sustained stimulation periods (150 s), maximal output occurred at 5 Hz, similar to the average action potential firing frequency of tonically active TIDA neurons. Application of the dopamine transporter blocker, methylphenidate, significantly increased dopamine levels in the ME, supporting a functional role of the transporter at the neurons' terminals. Lastly, TIDA neuron stimulation at the cell body yielded perisomatic release of dopamine, which may contribute to an ultrafast negative feedback mechanism to constrain TIDA electrical activity. Together, these data shed light on how spiking patterns in the neuroendocrine system translate to vesicular release toward the pituitary and identify how dopamine dynamics are controlled in the TIDA system at different cellular compartments.SIGNIFICANCE STATEMENT A central question in neuroscience is the complex relationship between neuronal discharge activity and transmitter release. By combining optogenetic stimulation and voltammetry, we address this issue in dopamine neurons of the neuroendocrine system, which faces particular spatiotemporal demands on exocytotic release; large amounts of neurohormone need to be secreted into the portal capillaries with precise timing to adapt to physiological requirements. Our data show that release is maximal around the neurons' default firing frequency. We further provide support for functional dopamine transport at the neurovascular terminals, shedding light on a long-standing controversy about the existence of neuroendocrine transmitter reuptake. Finally, we show that dopamine release occurs also at the somatodendritic level, providing a substrate for an ultrashort autoregulatory feedback loop.
Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
It is important to monitor serotonin neurochemistry in the context of brain disorders. Specifically, a better understanding of biophysical alterations and associated biochemical functionality within subregions of the brain will enable better of understanding of diseases such as depression. Fast voltammetric tools at carbon fiber microelectrodes provide an opportunity to make direct evoked and ambient serotonin measurements in vivo in mice. In this study, we characterize novel stimulation and measurement circuitries for serotonin analyses in brain regions relevant to psychiatric disease. Evoked and ambient serotonin in these brain areas, the CA2 region of the hippocampus and the medial prefrontal cortex, are compared to ambient and evoked serotonin in the substantia nigra pars reticulata, an area well established previously for serotonin measurements with fast voltammetry. Stimulation of a common axonal location evoked serotonin in all three brain regions. Differences are observed in the serotonin release and reuptake profiles between these three brain areas which we hypothesize to arise from tissue physiology heterogeneity around the carbon fiber microelectrodes. We validate this hypothesis mathematically and via confocal imaging. We thereby show that fast voltammetric methods can provide accurate information about local physiology and highlight implications for chemical mapping. Cover Image for this issue: doi: 10.1111/jnc.14739.
Assuntos
Encéfalo/fisiopatologia , Técnicas Eletroquímicas/métodos , Transtornos Mentais/fisiopatologia , Serotonina/análise , Serotonina/metabolismo , Animais , Axônios/fisiologia , Química Encefálica/fisiologia , Fibra de Carbono , Estimulação Elétrica , Potenciais Evocados , Hipocampo/química , Masculino , Feixe Prosencefálico Mediano , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Modelos Teóricos , Córtex Pré-Frontal/química , Substância Negra/químicaRESUMO
Adenosine is a ubiquitous neuromodulator that plays a role in sleep, vasodilation, and immune response and manipulating the adenosine system could be therapeutic for Parkinson's disease or ischemic stroke. Spontaneous transient adenosine release provides rapid neuromodulation; however, little is known about the effect of sex as a biological variable on adenosine signaling and this is vital information for designing therapeutics. Here, we investigate sex differences in spontaneous, transient adenosine release using fast-scan cyclic voltammetry to measure adenosine in vivo in the hippocampus CA1, basolateral amygdala, and prefrontal cortex. The frequency and concentration of transient adenosine release were compared by sex and brain region, and in females, the stage of estrous. Females had larger concentration transients in the hippocampus (0.161 ± 0.003 µM) and the amygdala (0.182 ± 0.006 µM) than males (hippocampus: 0.134 ± 0.003, amygdala: 0.115 ± 0.002 µM), but the males had a higher frequency of events. In the prefrontal cortex, the trends were reversed. Males had higher concentrations (0.189 ± 0.003 µM) than females (0.170 ± 0.002 µM), but females had higher frequencies. Examining stages of the estrous cycle, in the hippocampus, adenosine transients are higher concentration during proestrus and diestrus. In the cortex, adenosine transients were higher in concentration during proestrus, but were lower during all other stages. Thus, sex and estrous cycle differences in spontaneous adenosine are complex, and not completely consistent from region to region. Understanding these complex differences in spontaneous adenosine between the sexes and during different stages of estrous is important for designing effective treatments manipulating adenosine as a neuromodulator.
Assuntos
Adenosina/metabolismo , Encéfalo/metabolismo , Ciclo Estral/fisiologia , Caracteres Sexuais , Animais , Feminino , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. Electrophysiological biomarkers, such as local field potentials, have been used to monitor disease states. Real-time measurement of neurochemical substances may be similarly useful for disease characterization. Thus, the introduction of measurable neurochemical analytes has significantly expanded biomarker options for feedback-sensitive neuromodulation systems. The potential use of biomarker monitoring to advance neurostimulation approaches for treatment of Parkinson's disease, essential tremor, epilepsy, Tourette syndrome, obsessive-compulsive disorder, chronic pain, and depression is examined. Further, challenges and advances in the development of closed-loop neurostimulation technology are reviewed, as well as opportunities for next-generation closed-loop platforms.
Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Doenças do Sistema Nervoso/terapia , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Doença de Parkinson/terapia , Síndrome de Tourette/fisiopatologiaRESUMO
Amphetamine derivatives have been used in a wide variety of pathologies because of their pharmacological properties as psychostimulants, entactogens, anorectics, and antidepressants. However, adverse cardiovascular effects (sympathomimetics) and substance abuse problems (psychotropic and hallucinogenic effects) have limited their use. 4-Methylthioamphetamine (MTA) is an amphetamine derivative that has shown to inhibit monoamine uptake and monoamine oxidase. However, the pharmacological characterization (neurochemical, behavioral, and safety) of its derivatives 4-ethylthioamphetamine (ETA) and 4-methylthio-phenil-2-butanamine (MT-But) have not been studied. In the current experiments, we show that ETA and MT-But do not increase locomotor activity and conditioned place preference with respect to MTA. At the neurochemical level, ETA and MT-But do not increase in vivo DA release in striatum, but ETA and MT-But affect the nucleus accumbens bioaccumulation of DA and DOPAC. Regarding cardiovascular effects, the administration of MTA and ETA increased the mean arterial pressure and only ETA significantly increases the heart rate. Our results show that the pharmacological and safety profiles of MTA are modulated by changing the methyl-thio group or the methyl group of the aminoethyl chain.
Assuntos
Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Anfetamina/farmacologia , Anfetaminas/farmacologia , Corpo Estriado/efeitos dos fármacos , Dopamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Anfetaminas/química , Animais , Comportamento Animal , Temperatura Corporal , Ligantes , Locomoção/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Oxigênio/química , Ratos , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Serotonina/químicaRESUMO
Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2-4 s, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 µM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients was 3.2 and 3.5 s, respectively. On average, the adenosine release starts and peaks 0.2 s prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor l-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests that adenosine modulates blood flow on a rapid, sub-second time scale. Read the Editorial Highlight for this article on page 10.
Assuntos
Adenosina/metabolismo , Núcleo Caudado/metabolismo , Oxigênio/metabolismo , Putamen/metabolismo , Animais , Masculino , Microeletrodos , Ratos , Ratos Sprague-DawleyRESUMO
Selective serotonin reuptake inhibitors (SSRIs) were designed to treat depression by increasing serotonin levels throughout the brain via inhibition of clearance from the extracellular space. Although increases in serotonin levels are observed after acute SSRI exposure, 3-6 weeks of continuous use is required for relief from the symptoms of depression. Thus, it is now believed that plasticity in multiple brain systems that are downstream of serotonergic inputs contributes to the therapeutic efficacy of SSRIs. The onset of antidepressant effects also coincides with desensitization of somatodendritic serotonin autoreceptors in the dorsal raphe nucleus (DRN), suggesting that disrupting inhibitory feedback within the serotonin system may contribute to the therapeutic effects of SSRIs. Previously, we showed that chronic SSRI treatment caused a frequency-dependent facilitation of serotonin signaling that persisted in the absence of uptake inhibition. In this work, we use in vivo fast-scan cyclic voltammetry in mice to investigate a similar facilitation after a single treatment of the SSRI citalopram hydrobromide. Acute citalopram hydrobromide treatment resulted in frequency-dependent increases of evoked serotonin release in the substantia nigra pars reticulata. These increases were independent of changes in uptake velocity, but required SERT expression. Using microinjections, we show that the frequency-dependent enhancement in release is because of SERT inhibition in the DRN, demonstrating that SSRIs can enhance serotonin release by inhibiting uptake in a location distal to the terminal release site. The novel finding that SERT inhibition can disrupt modulatory mechanisms at the level of the DRN to facilitate serotonin release will help future studies investigate serotonin's role in depression and motivated behavior. In this work, stimulations of the dorsal raphe nucleus (DRN) evoke serotonin release that is recorded in the substantia nigra pars reticulata (SNpr) using in vivo fast-scan cyclic voltammetry. Systemic administration of a selective serotonin reuptake inhibitor (SSRI) causes both an increase in t1/2 and an increase in [5-HT]max in the SNpr. Local application of SSRI to the DRN recapitulates the increase in [5-HT]max observed in the SNpr without affecting uptake. Thus, SSRIs increase serotonin signaling via two distinct SERT-mediated mechanisms.
RESUMO
In this paper, we have fabricated 3D carbon nanofiber microelectrode arrays (MEAs) with highly reproducible and rich chemical surface areas for fast scan cyclic voltammetry (FSCV). Carbon nanofibers are created from negative photoresist by a new process called dual O2 plasma-assisted pyrolysis. The proposed approach significantly improves film adhesion and increases surface reactivity. We showcase our sensor's compatibility with FSCV analysis by demonstrating highly sensitive and stable FSCV dopamine measurements on a prototype 4-channel array. We envision with proper surface fuctionalization the 3D carbon nanofiber MEA enable sensitive and reliable detection of multiple neurotransmitters simultaneously.
Assuntos
Carbono/química , Dopamina/análise , Nanofibras/química , Nanotecnologia/instrumentação , Gases em Plasma/química , Calibragem , Eletroquímica , Limite de Detecção , Microeletrodos , Oxigênio/química , Fatores de TempoRESUMO
Dopamine release and uptake have been studied in the Drosophila larval ventral nerve cord (VNC) using optogenetics to stimulate endogenous release. However, other areas of the central nervous system remain uncharacterized. Here, we compare dopamine release in the VNC and protocerebrum of larval Drosophila. Stimulations were performed with CsChrimson, a new, improved, red light-activated channelrhodopsin. In both regions, dopamine release was observed after only a single, 4 ms duration light pulse. Michaelis-Menten modeling was used to understand release and uptake parameters for dopamine. The amount of dopamine released ([DA]p ) on the first stimulation pulse is higher than the average [DA]p released from subsequent pulses. The initial and average amount of dopamine released per stimulation pulse is smaller in the protocerebrum than in the VNC. The average Vmax of 0.08 µM/s in the protocerebrum was significantly higher than the Vmax of 0.05 µM/s in the VNC. The average Km of 0.11 µM in the protocerebrum was not significantly different from the Km of 0.10 µM in the VNC. When the competitive dopamine transporter (DAT) inhibitor nisoxetine was applied, the Km increased significantly in both regions while Vmax stayed the same. This work demonstrates regional differences in dopamine release and uptake kinetics, indicating important variation in the amount of dopamine available for neurotransmission and neuromodulation. We use a new optogenetic tool, red light activated CsChrimson, to stimulate the release of dopamine in the ventral nerve cord and medial protocerebrum of the larval Drosophila central nervous system. We monitored extracellular dopamine by fast scan cyclic voltammetry and used Michaelis-Menten modeling to probe the regulation of extracellular dopamine, discovering important similarities and differences in these two regions.
Assuntos
Sistema Nervoso Central/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Optogenética , Animais , Sistema Nervoso Central/anatomia & histologia , Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Drosophila , Técnicas Eletroquímicas , Feminino , Fluoxetina/análogos & derivados , Fluoxetina/farmacologia , Cinética , Larva/anatomia & histologia , Microeletrodos , Modelos Biológicos , Rodopsina/genética , Rodopsina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.