Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 151(6): 1646-1654, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36716825

RESUMO

BACKGROUND: Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES: To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS: The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS: In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS: These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Miastenia Gravis , Humanos , Autoanticorpos , Imunoglobulina G , Autoantígenos
2.
Proc Natl Acad Sci U S A ; 115(8): 1901-1906, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432186

RESUMO

A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N-linked glycans, a process conditional on the introduction of consensus amino acid motifs (N-glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.


Assuntos
Região Variável de Imunoglobulina/genética , Anticorpos , Anticorpos Monoclonais , Afinidade de Anticorpos , Artrite Reumatoide/imunologia , Autoanticorpos , Linfócitos B/metabolismo , Glicosilação , Humanos , Imunoglobulina G/genética
3.
Eur J Immunol ; 48(6): 1030-1045, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29512823

RESUMO

Autoreactive B cells have a central role in the pathogenesis of rheumatoid arthritis (RA), and recent findings have proposed that anti-citrullinated protein autoantibodies (ACPA) may be directly pathogenic. Herein, we demonstrate the frequency of variable-region glycosylation in single-cell cloned mAbs. A total of 14 ACPA mAbs were evaluated for predicted N-linked glycosylation motifs in silico, and compared to 452 highly-mutated mAbs from RA patients and controls. Variable region N-linked motifs (N-X-S/T) were strikingly prevalent within ACPA (100%) compared to somatically hypermutated (SHM) RA bone marrow plasma cells (21%), and synovial plasma cells from seropositive (39%) and seronegative RA (7%). When normalized for SHM, ACPA still had significantly higher frequency of N-linked motifs compared to all studied mAbs including highly mutated HIV broadly-neutralizing and malaria-associated mAbs. The Fab glycans of ACPA-mAbs were highly sialylated, contributed to altered charge, but did not influence antigen binding. The analysis revealed evidence of unusual B-cell selection pressure and SHM-mediated decrease in surface charge and isoelectric point in ACPA. It is still unknown how these distinct features of anti-citrulline immunity may have an impact on pathogenesis. However, it is evident that they offer selective advantages for ACPA+ B cells, possibly through non-antigen driven mechanisms.


Assuntos
Anticorpos Antiproteína Citrulinada/metabolismo , Anticorpos Monoclonais/metabolismo , Artrite Reumatoide/imunologia , Linfócitos B/imunologia , Região Variável de Imunoglobulina/metabolismo , Motivos de Aminoácidos/genética , Anticorpos Antiproteína Citrulinada/genética , Anticorpos Monoclonais/genética , Diferenciação Celular , Células Cultivadas , Células Clonais , Biologia Computacional , Glicosilação , Humanos , Região Variável de Imunoglobulina/genética , Ativação Linfocitária , Líquido Sinovial/imunologia
4.
J Am Soc Mass Spectrom ; 32(8): 2062-2071, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-33687195

RESUMO

The aim of this study was to characterize the product variants of a therapeutic T-cell bispecific humanized monoclonal antibody (TCB Mab, ∼200 kDa, asymmetric) and to develop an online cation-exchange chromatography native electrospray mass spectrometry method (CEC-UV-MS) for direct TCB Mab charge variant monitoring during bioprocess and formulation development. For the identification and functional evaluation of the diverse and complex TCB Mab charge variants, offline fractionation combined with comprehensive analytical testing was applied. The offline fractionation of abundant product variant peaks enabled identification of coeluting acid charge variants such as asparagine deamidation, primary and secondary Fab glycosylation (with and without sialic acid), and the presence of O-glycosylation in the G4S-linker region. Consequently, a new nonconsensus N-glycosylation motif (N-338-FG) in the heavy chain CDR region was discovered. Functional evaluation by cell-based potency testing demonstrated a clear and negative impact of both asparagine deamidations, whereas the O-glycosylation did not affect the TCB Mab biological activity. We established an online native CEC-UV-MS method, with an ammonium acetate buffer and pH gradient, to directly monitor the TCB Mab charge variants. All abundant chemical degradations and post-translational amino acid modifications already identified by offline fraction experiments and liquid chromatography mass spectrometry peptide mapping could also be monitored by the online CEC-UV-MS method. The herein reported online native CEC-UV-MS methodology represents a complementary or even alternative approach for multiattribute monitoring of biologics, offering multiple benefits, including increased throughput and reduced sample handling and intact protein information in the near-native state.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Anticorpos Monoclonais/metabolismo , Cátions , Regiões Determinantes de Complementaridade , Glicosilação , Fragmentos Fab das Imunoglobulinas/análise , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Mapeamento de Peptídeos/métodos , Raios Ultravioleta
5.
Front Chem ; 7: 698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709228

RESUMO

Fcɤ receptors (FcɤR) mediate key functions in immunological responses. For instance, FcɤRIIIa is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). FcɤRIIIa interacts with the fragment crystallizable (Fc) of immunoglobulin G (IgG). This interaction is known to be highly dependent on IgG Fc glycosylation. Thus, the impact of glycosylation features on this interaction has been investigated in several studies by numerous analytical and biochemical techniques. FcɤRIIIa affinity chromatography (AC) hyphenated to mass spectrometry (MS) is a powerful tool to address co-occurring Fc glycosylation heterogeneity of monoclonal antibodies (mAbs). However, MS analysis of mAbs at the intact level may provide limited proteoform resolution, for example, when additional heterogeneity is present, such as antigen-binding fragment (Fab) glycosylation. Therefore, we investigated middle-up approaches to remove the Fab and performed AC-MS on the IgG Fc to evaluate its utility for FcɤRIIIa affinity assessment compared to intact IgG analysis. We found the protease Kgp to be particularly suitable for a middle-up FcɤRIIIa AC-MS workflow as demonstrated for the Fab glycosylated cetuximab. The complexity of the mass spectra of Kgp digested cetuximab was significantly reduced compared to the intact level while affinity was fully retained. This enabled a reliable assignment and relative quantitation of Fc glycoforms in FcɤRIIIa AC-MS. In conclusion, our workflow allows a functional separation of differentially glycosylated IgG Fc. Consequently, applicability of FcɤRIIIa AC-MS is extended to Fab glycosylated IgG, i.e., cetuximab, by significantly reducing ambiguities in glycoform assignment vs. intact analysis.

6.
Front Immunol ; 9: 740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706962

RESUMO

Immunoglobulin G (IgG) can contain N-linked glycans in the variable domains, the so-called Fab glycans, in addition to the Fc glycans in the CH2 domains. These Fab glycans are acquired following introduction of N-glycosylation sites during somatic hypermutation and contribute to antibody diversification. We investigated whether Fab glycans may-in addition to affecting antigen binding-contribute to antibody stability. By analyzing thermal unfolding profiles of antibodies with or without Fab glycans, we demonstrate that introduction of Fab glycans can improve antibody stability. Strikingly, removal of Fab glycans naturally acquired during antigen-specific immune responses can deteriorate antibody stability, suggesting in vivo selection of stable, glycosylated antibodies. Collectively, our data show that variable domain N-linked glycans acquired during somatic hypermutation can contribute to IgG antibody stability. These findings indicate that introducing Fab glycans may represent a mechanism to improve therapeutic/diagnostic antibody stability.


Assuntos
Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Polissacarídeos/imunologia , Antígenos/imunologia , Linfócitos B/imunologia , Humanos , Domínios Proteicos , Estabilidade Proteica , Desdobramento de Proteína
7.
MAbs ; 9(1): 104-113, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27834568

RESUMO

Excessive transforming growth factor (TGF)-ß is associated with pro-fibrotic responses in lung disease, yet it also plays essential roles in tissue homeostasis and autoimmunity. Therefore, selective inhibition of excessive and aberrant integrin-mediated TGF-ß activation via targeting the α-v family of integrins is being pursued as a therapeutic strategy for chronic lung diseases, to mitigate any potential safety concerns with global TGF-ß inhibition. In this work, we reveal a novel mechanism of inhibiting TGF-ß activation utilized by an αvß8 targeting antibody, 37E1B5. This antibody blocks TGF-ß activation while not inhibiting cell adhesion. We show that an N-linked complex-type Fab glycan in H-CDR2 of 37E1B5 is directly involved in the inhibition of latent TGF-ß activation. Removal of the Fab N-glycosylation site by single amino acid substitution, or removal of N-linked glycans by enzymatic digestion, drastically reduced the antibody's ability to inhibit latency-associated peptide (LAP) and αvß8 association, and TGF-ß activation in an αvß8-mediated TGF-ß signaling reporter assay. Our results indicate a non-competitive, allosteric inhibition of 37E1B5 on αvß8-mediated TGF-ß activation. This unique, H-CDR2 glycan-mediated mechanism may account for the potent but tolerable TGF-b activation inhibition and lack of an effect on cellular adhesion by the antibody.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/química , Integrinas/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacocinética , Regiões Determinantes de Complementaridade/imunologia , Glicosilação , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Polissacarídeos/química , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA