Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Diabetologia ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832971

RESUMO

AIMS/HYPOTHESIS: The gut microbiome is implicated in the disease process leading to clinical type 1 diabetes, but less is known about potential changes in the gut microbiome after the diagnosis of type 1 diabetes and implications in glucose homeostasis. We aimed to analyse potential associations between the gut microbiome composition and clinical and laboratory data during a 2 year follow-up of people with newly diagnosed type 1 diabetes, recruited to the Innovative approaches to understanding and arresting type 1 diabetes (INNODIA) study. In addition, we analysed the microbiome composition in initially unaffected family members, who progressed to clinical type 1 diabetes during or after their follow-up for 4 years. METHODS: We characterised the gut microbiome composition of 98 individuals with newly diagnosed type 1 diabetes (ND cohort) and 194 autoantibody-positive unaffected family members (UFM cohort), representing a subgroup of the INNODIA Natural History Study, using metagenomic sequencing. Participants from the ND cohort attended study visits within 6 weeks from the diagnosis and 3, 6, 12 and 24 months later for stool sample collection and laboratory tests (HbA1c, C-peptide, diabetes-associated autoantibodies). Participants from the UFM cohort were assessed at baseline and 6, 12, 18, 24 and 36 months later. RESULTS: We observed a longitudinal increase in 21 bacterial species in the ND cohort but not in the UFM cohort. The relative abundance of Faecalibacterium prausnitzii was inversely associated with the HbA1c levels at diagnosis (p=0.0019). The rate of the subsequent disease progression in the ND cohort, as assessed by change in HbA1c, C-peptide levels and insulin dose, was associated with the abundance of several bacterial species. Individuals with rapid decrease in C-peptide levels in the ND cohort had the lowest gut microbiome diversity. Nineteen individuals who were diagnosed with type 1 diabetes in the UFM cohort had increased abundance of Sutterella sp. KLE1602 compared with the undiagnosed UFM individuals (p=1.2 × 10-4). CONCLUSIONS/INTERPRETATION: Our data revealed associations between the gut microbiome composition and the disease progression in individuals with recent-onset type 1 diabetes. Future mechanistic studies as well as animal studies and human trials are needed to further validate the significance and causality of these associations.

2.
Curr Issues Mol Biol ; 46(1): 557-569, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248338

RESUMO

Modulation of the human gut microbiome has become an area of interest in the nutraceutical space. We explored the effect of the novel foundational nutrition supplement AG1® on the composition of human microbiota in an in vitro experimental design. Employing the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) model, AG1® underwent digestion, absorption, and subsequent colonic microenvironment simulation under physiologically relevant conditions in healthy human fecal inocula. Following 48 h of colonic simulation, the gut microbiota were described using shallow shotgun, whole genome sequencing. Metagenomic data were used to describe changes in community structure (alpha diversity, beta diversity, and changes in specific taxa) and community function (functional heterogeneity and changes in specific bacterial metabolic pathways). Results showed no significant change in alpha diversity, but a significant effect of treatment and donor and an interaction between the treatment and donor effect on structural heterogeneity likely stemming from the differential enrichment of eight bacterial taxa. Similar findings were observed for community functional heterogeneity likely stemming from the enrichment of 20 metabolic pathways characterized in the gene ontology term database. It is logical to conclude that an acute dose of AG1 has significant effects on gut microbial composition that may translate into favorable effects in humans.

3.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G607-G621, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502145

RESUMO

Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.


Assuntos
Bacteroides thetaiotaomicron , Colite , Faecalibacterium prausnitzii , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Animais , Colite/terapia , Colite/microbiologia , Colite/induzido quimicamente , Colite/imunologia , Camundongos , Masculino , Humanos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Adulto , Feminino , Fezes/microbiologia , Modelos Animais de Doenças , Pessoa de Meia-Idade
4.
Cell Commun Signal ; 22(1): 54, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243314

RESUMO

BACKGROUND: The gut microbiota plays a crucial role in coronary artery disease (CAD) development, but limited attention has been given to the role of the microbiota in preventing this disease. This study aimed to identify key biomarkers using metagenomics and untargeted metabolomics and verify their associations with atherosclerosis. METHODS: A total of 371 participants, including individuals with various CAD types and CAD-free controls, were enrolled. Subsequently, significant markers were identified in the stool samples through gut metagenomic sequencing and untargeted metabolomics. In vivo and in vitro experiments were performed to investigate the mechanisms underlying the association between these markers and atherosclerosis. RESULTS: Faecal omics sequencing revealed that individuals with a substantial presence of Faecalibacterium prausnitzii had the lowest incidence of CAD across diverse CAD groups and control subjects. A random forest model confirmed the significant relationship between F. prausnitzii and CAD incidence. Notably, F. prausnitzii emerged as a robust, independent CAD predictor. Furthermore, our findings indicated the potential of the gut microbiota and gut metabolites to predict CAD occurrence and progression, potentially impacting amino acid and vitamin metabolism. F. prausnitzii mitigated inflammation and exhibited an antiatherosclerotic effect on ApoE-/- mice after gavage. This effect was attributed to reduced intestinal LPS synthesis and reinforced mechanical and mucosal barriers, leading to decreased plasma LPS levels and an antiatherosclerotic outcome. CONCLUSIONS: Sequencing of the samples revealed a previously unknown link between specific gut microbiota and atherosclerosis. Treatment with F. prausnitzii may help prevent CAD by inhibiting atherosclerosis.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Faecalibacterium prausnitzii/metabolismo , Lipopolissacarídeos
5.
Pharmacol Res ; 206: 107277, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945379

RESUMO

Faecalibacterium prausnitzii (F. prausnitzii) has been recognized for its various intestinal and extraintestinal benefits to human. And reduction of F. prausnitzii has been linked to an increased risk of intestinal fibrosis in patients of Crohn's disease (CD). In this study, oral administration of either live F. prausnitzii or its extracellular vesicles (FEVs) can markedly mitigate the severity of fibrosis in mice induced by repetitive administration of DSS. In vitro experiment revealed that FEVs were capable of directing the polarization of peripheral blood mononuclear cells (PBMCs) towards an M2b macrophage phenotype, which has been associated with anti-fibrotic activities. This effect of FEV was found to be stable under various conditions that promote the development of pro-fibrotic M1/M2a/M2c macrophages. Proteomics and RNA sequencing were performed to uncover the molecular modulation of macrophages by FEVs. Notably, we found that FEVs reprogramed every metabolism of macrophages by damaging the mitochondria, and inhibited oxidative phosphorylation and glycolysis. Moreover, FEV-treated macrophages showed a decreased expression of PPARγ and an altered lipid processing phenotype characterized by decreased cholesterol efflux, which may promote energy reprogramming. Taken together, these findings identify FEV as a driver of macrophage reprogramming, suggesting that triggering M2b macrophage polarization by oral admiration of FEV may serve as strategy to alleviate hyperfibrotic intestine conditions in CD.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38848117

RESUMO

Two Gram-stain-negative, straight rods, non-motile, asporogenous, catalase-negative and obligately anaerobic butyrate-producing strains, HLW78T and CYL33, were isolated from faecal samples of two healthy Taiwanese adults. Phylogenetic analyses of 16S rRNA and DNA mismatch repair protein MutL (mutL) gene sequences revealed that these two novel strains belonged to the genus Faecalibacterium. On the basis of 16S rRNA and mutL gene sequence similarities, the type strains Faecalibacterium butyricigenerans AF52-21T(98.3-98.1 % and 79.0-79.5 % similarity), Faecalibacterium duncaniae A2-165T(97.8-97.9 % and 70.9-80.1 %), Faecalibacterium hattorii APC922/41-1T(97.1-97.3 % and 80.3-80.5 %), Faecalibacterium longum CM04-06T(97.8-98.0% and 78.3 %) and Faecalibacterium prausnitzii ATCC 27768T(97.3-97.4 % and 82.7-82.9 %) were the closest neighbours to the novel strains HLW78T and CYL33. Strains HLW78T and CYL33 had 99.4 % both the 16S rRNA and mutL gene sequence similarities, 97.9 % average nucleotide identity (ANI), 96.3 % average amino acid identity (AAI), and 80.5 % digital DNA-DNA hybridization (dDDH) values, indicating that these two strains are members of the same species. Phylogenomic tree analysis indicated that strains HLW78T and CYL33 formed an independent robust cluster together with F. prausnitzii ATCC 27768T. The ANI, AAI and dDDH values between strain HLW78T and its closest neighbours were below the species delineation thresholds of 77.6-85.1 %, 71.4-85.2 % and 28.3-30.9 %, respectively. The two novel strains could be differentiated from the type strains of their closest Faecalibacterium species based on their cellular fatty acid compositions, which contained C18 : 1 ω7c and lacked C15 : 0 and C17 : 1 ω6c, respectively. Phenotypic, chemotaxonomic and genotypic test results demonstrated that the two novel strains HLW78T and CYL33 represented a single, novel species within the genus Faecalibacterium, for which the name Faecalibacterium taiwanense sp. nov. is proposed. The type strain is HLW78T (=BCRC 81397T=NBRC 116372T).


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Faecalibacterium , Ácidos Graxos , Fezes , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Taiwan , DNA Bacteriano/genética , Ácidos Graxos/análise , Adulto , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Faecalibacterium/classificação , Composição de Bases , Proteínas MutL/genética
7.
Mol Biol Rep ; 51(1): 505, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619680

RESUMO

Recent and continuing advances in gut microbiome research have pointed out the role of the gut microbiota as an unexplored source of potentially beneficial probiotic microbes. Along the lines of these advances, both public awareness and acceptance of probiotics are increasing. That's why; academic and industrial research is dedicated to identifying and investigating new microbial strains for the development of next-generation probiotics (NGPs). At this time, there is a growing interest in NGPs as biotherapeutics that alter the gut microbiome and affect various diseases development. In this work, we have focused on some emergent and promising NGPs, specifically Eubacterium hallii, Faecalibacterium prausnitzii, Roseburia spp., Akkermansia muciniphila, and Bacteroides fragilis, as their presence in the gut can have an impact on the development of various diseases. Emerging studies point out the beneficial roles of these NGPs and open up novel promising therapeutic options. Interestingly, these NGPs were found to enhance gastrointestinal immunity, enhance immunotherapy efficacy in cancer patients, retain the intestinal barrier integrity, generate valuable metabolites, especially short-chain fatty acids, and decrease complications of chemotherapy and radiotherapy. Although many of these NGPs are considered promising for the prevention and treatment of several chronic diseases, research on humans is still lacking. Therefore, approval of these microbes from regulatory agencies is rare. Besides, some issues limit their wide use in the market, such as suitable methods for the culture and storage of these oxygen-sensitive microbes. The present review goes over the main points related to NGPs and gives a viewpoint on the key issues that still hinder their wide application. Furthermore, we have focused on the advancement in NGPs and human healthiness investigations by clarifying the limitations of traditional probiotic microorganisms, discussing the characteristics of emerging NGPs and defining their role in the management of certain ailments. Future research should emphasize the isolation, mechanisms of action of these probiotics, safety, and clinical efficacy in humans.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Imunoterapia , Oxigênio , Probióticos/uso terapêutico
8.
BMC Pregnancy Childbirth ; 24(1): 226, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561737

RESUMO

AIM: To investigate the differences in gut microbiota composition among nonpregnant women of reproductive age, healthy pregnant women, and gestational diabetes (GD) patients. METHODS: A total of 45 outpatients were enrolled and divided into three groups: nonpregnant women of reproductive age (control group, n = 23), healthy pregnant women (normal group, n = 10), and GD patients (GD group, n = 12). Faecal samples were collected and sequenced using 16S rRNA gene sequencing to analyse the microbial composition. RESULTS: (1) Pregnant patients exhibited an increase in the abundance of Streptococcus (Pnormal = 0.01286, PGD = 0.002965) and Blautia (Pnormal = 0.0003924, PGD = 0.000246) but a decrease in the abundance of Roseburia (Pnormal = 0.0361, PGD = 0.007075), Phascolarctobacterium (Pnormal = 0.0003906, PGD = 0.02499) and Lachnoclostridium (Pnormal = 0.0003906, PGD = 0.03866). (2) Compared with healthy pregnant women, GD patients had an excessive increase in Streptococcus abundance and decrease in Roseburia abundance. The increase in Blautia abundance and the decrease in Phascolarctobacterium and Lachnoclostridium abundance in GD patients were less than those in healthy pregnant women. (3) The abundance of Faecalibacterium prausnitzii decreased significantly in GD patients (PGD = 0.02985) but not in healthy pregnant patients (Pnormal = 0.1643). CONCLUSIONS: Abnormal increases and decreases in the abundances of gut microbiota components, especially Faecalibacterium prausnitzii, were observed in GD patients. TRIAL REGISTRATION: The cross-sectional research was conducted in accordance with the Declaration of Helsinki, and approved by Sir Run Run Shaw Hospital Clinical Trials and Biomedical Ethics Committee. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR1900026164, 24/09/2019, http://www.chictr.org.cn/showproj.aspx?proj=43,455 ).


Assuntos
Diabetes Gestacional , Microbioma Gastrointestinal , Feminino , Humanos , Gravidez , Estudos Transversais , Diabetes Gestacional/microbiologia , Fezes/microbiologia , RNA Ribossômico 16S/genética
9.
Anaerobe ; : 102881, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925221

RESUMO

OBJECTIVES: The genus Faecalibacterium is one of the most important butyrate producers in the human intestinal tract and has been widely linked to health. Recently, several different species are described, but still more phylogroups have been identified, suggesting that additional species may exist. Four strains HTF-FT, HTF-128, HTF-75HT and HTF-76H, representing two different phylogenetic clusters, are evaluated in this study. METHODS: Phylogenomic analysis was performed using whole-genome sequences and 16S rRNA gene sequences. Chemotaxonomic analysis was done based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Physiological and phenotypical characteristics of these strains were also determined. All characteristics of these strains were compared with other validly published species within the genus Faecalibacterium. RESULTS: On a genomic level, the four strains shared an average nucleotide identity (ANI) of <95.0% and digital DNA-DNA hybridization (dDDH) of <70.0 with other Faecalibacterium species, while between HTF-FT and HTF-128 the ANI-value was 97.18% and the dDDH was 76.8%. HTF-75HT and HTF-76H had an ANI and dDDH value of 100% (99.96%) and 100% (99.99%) respectively. 16S rRNA gene and chemotaxonomic analysis were in accordance with the genomic data, confirming that the four strains represent two different Faecalibacterium species. CONCLUSIONS: Faecalibacterium strains HTF-FT (=DSM 117771T =NCIMB 15531T), HTF-128, HTF-75HT (=DSM 17770T =NCIMB 15530T) and HTF-76H represent two novel species. The names Faecalibacterium wellingii with HTF-FT as type strain and Faecalibacterium langellae with HTF-75HT as type strain are proposed.

10.
Cancer ; 129(13): 1986-1994, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943918

RESUMO

BACKGROUND: The 5-year overall survival of pancreas adenocarcinoma (PCa) remains less than 10%. Clinical and tumor genomic characteristics have not differentiated PCa long-term survivors (LTSs) from unselected patients. Preclinical studies using fecal transplant experiments from LTSs of PCa have revealed delayed tumor growth through unknown mechanisms involving the fecal microbiota. However, features of the fecal microbiome in patients with long-term survival are not well described. METHODS: In this cross-sectional study, comprehensive shotgun metagenomics was performed on stool from PCa patients with long-term survival (n = 16). LTS was defined as >4 years from pancreatectomy and all therapy without recurrence. LTSs were compared to control patients with PCa who completed pancreatectomy and chemotherapy (n = 8). Stool was sequenced using an Illumina NextSeq500. Statistical analyses were performed in R with MicrobiomeSeq and Phyloseq for comparison of LTSs and controls. RESULTS: All patients underwent pancreatectomy and chemotherapy before sample donation. The median time from pancreatectomy of 6 years (4-14 years) for LTSs without evidence of disease compared to a median disease-free survival of 1.8 years from pancreatectomy in the control group. No differences were observed in overall microbial diversity for LTSs and controls using Shannon/Simpson indexes. Significant enrichment of species relative abundance was observed in LTSs for the Ruminococacceae family specifically Faecalibacterium prausnitzii species as well as Akkermansia muciniphila species. CONCLUSIONS: Stool from patients cured from PCa has more relative abundance of Faecalibacterium prausnitzii and Akkermansia muciniphila. Additional studies are needed to explore potential mechanisms by which the fecal microbiota may influence survival in PCa. PLAIN LANGUAGE SUMMARY: Although pancreatic cancer treatments have improved, the number of long-term survivors has remained stagnant with a 5-year overall survival estimate of 9%. Emerging evidence suggests that microbes within the gastrointestinal tract can influence cancer response through activation of the immune system. In this study, we profiled the stool microbiome in long-term survivors of pancreas cancer and controls. Several enriched species previously associated with enhanced tumor immune response were observed including Faecalibacterium prausnitzii and Akkermansia muciniphila. These findings warrant additional study assessing mechanisms by which the fecal microbiota may enhance pancreatic cancer immune response.


Assuntos
Metagenoma , Neoplasias Pancreáticas , Humanos , Estudos Transversais , Verrucomicrobia , Fezes , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Sobreviventes
11.
Gastroenterology ; 163(4): 982-994.e14, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35709830

RESUMO

BACKGROUND & AIMS: The long-term efficacy and possible adverse events of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS) are unknown. This study performed a 3-year follow-up of the patients in our previous clinical trial to clarify these aspects. METHODS: This study included 125 patients (104 females, and 21 males): 38 in a placebo group, 42 who received 30 g of donor feces, and 45 who received 60 g of donor feces. Feces was administered to the duodenum. The patients provided a fecal sample and completed 5 questionnaires at baseline and at 2 and 3 years after FMT. Fecal bacteria and dysbiosis index were analyzed using 16S ribosomal RNA gene polymerase chain reaction DNA amplification/probe hybridization covering the V3 to V9 regions. RESULTS: Response rates were 26.3%, 69.1%, and 77.8% in the placebo, 30-g, and 60-g groups, respectively, at 2 years after FMT, and 27.0%, 64.9%, and 71.8%, respectively, at 3 years after FMT. The response rates were significantly higher in the 30-g and 60-g groups than in the placebo group. Patients in the 30-g and 60-g groups had significantly fewer IBS symptoms and fatigue, and a greater quality of life both at 2 and 3 years after FMT. The dysbiosis index decreased only in the active treatment groups at 2 and 3 years after FMT. Fluorescent signals of 10 bacteria had significant correlations with IBS symptoms and fatigue after FMT in the 30-g and 60-g groups. No long-term adverse events were recorded. CONCLUSIONS: FMT performed according to our protocol resulted in high response rates and long-standing effects with only few mild self-limited adverse events. This study was registered at www. CLINICALTRIALS: gov (NCT03822299).


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Bactérias , DNA , Disbiose/microbiologia , Fadiga/etiologia , Transplante de Microbiota Fecal/efeitos adversos , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Síndrome do Intestino Irritável/microbiologia , Masculino , Qualidade de Vida , Resultado do Tratamento
12.
Dig Dis ; 41(5): 798-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630947

RESUMO

BACKGROUND: Small intestinal bacterial overgrowth (SIBO) is associated with diarrhea-predominant irritable bowel syndrome (IBS-D). Probiotics like Saccharomyces boulardii CNCM I-745 (Sb) may be efficacious in balancing the microbiota. This randomized open label study assessed the effect of Sb in patients with bacterial overgrowth associated with IBS-D and its impact on the intestinal microbiota. METHODS: Patients were randomized to receive Sb + dietary advice (Sb + DA) or dietary advice (DA) only for 15 days. SIBO was assessed by the lactulose hydrogen breath test (LHBT). Symptoms were assessed with the IBS Symptom Severity Scale (IBS-SSS) and stool consistency with the Bristol Stool Form Scale. Microbiota and mycobiota were analyzed by 16S rDNA and ITS2. RESULTS: 54 patients were included, among whom 48 (27 Sb + DA, 21 DA) were evaluated. Decrease of hydrogen excretion was slightly higher in Sb + DA group, 41% versus 29% in DA group, and IBS-SSS total score were reduced by -134 and -93, respectively. The proportion of patients with diarrhea was lower in the Sb + DA group than in the DA group (25.9% compared to 47.6%). Bacterial and fungal microbiota showed that Sb treatment was associated with several modifications. Interestingly, F. prausnitzii was more abundant in Sb-treated patients with marked clinical improvement. The safety of S. boulardii CNCM I-745 was excellent. CONCLUSIONS: In patients with SIBO, S. boulardii CNCM I-745 associated with dietary advice reduced bacterial overgrowth and improved digestive symptoms while restoring the intestinal microbiota. The increased abundance of F. prausnitzii coupled with symptom improvement merits further research.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Saccharomyces boulardii , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Projetos Piloto , Intestino Delgado , Diarreia/terapia , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico
13.
Cell Mol Life Sci ; 79(2): 76, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043293

RESUMO

Probiotics currently available on the market generally belong to a narrow range of microbial species. However, recent studies about the importance of the gut microbial commensals on human health highlighted that the gut microbiome is an unexplored reservoir of potentially beneficial microbes. For this reason, academic and industrial research is focused on identifying and testing novel microbial strains of gut origin for the development of next-generation probiotics. Although several of these are promising for the prevention and treatment of many chronic diseases, studies on human subjects are still scarce and approval from regulatory agencies is, therefore, rare. In addition, some issues need to be overcome before implementing their wide application on the market, such as the best methods for cultivation and storage of these oxygen-sensitive taxa. This review summarizes the most recent evidence related to NGPs and provides an outlook to the main issues that still limit their wide employment.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Probióticos/farmacologia , Akkermansia/metabolismo , Fenômenos Fisiológicos Bacterianos , Clostridiales/metabolismo , Disbiose/microbiologia , Faecalibacterium prausnitzii/metabolismo , Humanos , Prevotella/metabolismo
14.
Plant Foods Hum Nutr ; 78(4): 698-703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919537

RESUMO

Dietary prebiotic fibers play an important role in modulating gut microbiota by enhancing the abundance of beneficial microorganisms and their bioactive metabolites. However, dietary fibers are a structurally heterogeneous class of polysaccharides, varying in molar mass, branching patterns, and monosaccharide composition, which could influence their utilization by various gut microorganisms. The present study aimed to investigate the effects of molar mass and chemical structure of wheat arabinoxylan fiber (AX) on the growth and metabolism of two key gut resident bacteria (Faecalibacterium prausnitzii and Lacticaseibacillus rhamnosus LGG), which are linked to human health. For this purpose, low, medium, and high molar masses of AX (LAX, MAX, and HAX, respectively) were modified with specific α-arabinofuranosidases to leave only singly substituted, only doubly substituted, or unsubstituted xylose units. Almost all the modified AX samples showed a better prebiotic score than unmodified AX for different molar masses. The modified LAX exhibited a better prebiotic effect than HAX and MAX. In addition, LAX, with doubly substituted xylose units, exhibited the highest prebiotic potential and SCFA production by both microorganisms. Furthermore, AX, either singly or doubly substituted, had a consistent impact on L. rhamnosus growth, whereas AX, with all arabinose residues removed, had a greater impact on F. prausnitzii. These findings support the potential of bioengineered AX as next-generation prebiotics targeting health-related gut microbes.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Humanos , Prebióticos/microbiologia , Triticum/química , Xilose , Fibras na Dieta/análise , Xilanos/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-35416766

RESUMO

Faecalibacterium prausnitzii is one of the most important butyrate-producing bacteria in the human gut. Previous studies have suggested the presence of several phylogenetic groups, with differences at the species level, in the species, and a taxonomic re-evaluation is thus essential for further understanding of ecology of the important human symbiont. Here we examine the phenotypic, physiological, chemotaxonomic and phylogenomic characteristics of six F. prausnitzii strains (BCRC 81047T=ATCC 27768T, A2-165T=JCM 31915T, APC918/95b=JCM 39207, APC942/30-2=JCM 39208, APC924/119=JCM 39209 and APC922/41-1T=JCM 39210T) deposited in public culture collections with two reference strains of Faecalibacterium butyricigenerans JCM 39212T and Faecalibacterium longum JCM 39211T. Faecalibacterium sp. JCM 17207T isolated from caecum of broiler chicken was also included. Three strains of F. prausnitzii (BCRC 81047T, JCM 39207 and JCM 39209) shared more than 96.6 % average nucleotide identity (ANI) and 69.6 % digital DNA-DNA hybridization (dDDH) values, indicating that the three strains are members of the same species. On the other hand, the remaining three strains of F. prausnitzii (JCM 31915T, JCM 39208 and JCM 39210T) were clearly separated from the above three strains based on the ANI and dDDH values. Rather, JCM 39208 showed ANI and dDDH values over the cut-off values of species discrimination (>70 % dDDH and >95-96 % ANI) with F. longum JCM 39211T, whereas JCM 31915T, JCM 39210T and JCM 17207T did not share dDDH and ANI values over the currently accepted cut-off values with any of the tested strains, including among them. Furthermore, the cellular fatty acid patterns of these strains were slightly different from other F. prausnitzii strains. Based on the collected data, F. prausnitzii JCM 31915T, F. prausnitzii JCM 39210T and Faecalibacterium sp. JCM 17207T represent three novel species of the genus Faecalibacterium, for which the names Faecalibacterium duncaniae sp. nov. (type strain JCM 31915T=DSM 17677T=A2-165T), Faecalibacterium hattorii sp. nov. (type strain JCM 39210T=DSM 107841T=APC922/41-1T) and Faecalibacterium gallinarum sp. nov. (type strain JCM 17207T=DSM 23680T=ic1379T) are proposed.


Assuntos
Galinhas , Ácidos Graxos , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Faecalibacterium , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163630

RESUMO

The commensal bacterium Faecalibacterium prausnitzii has unique anti-inflammatory properties, at least some of which have been attributed to its production of MAM, the Microbial Anti-inflammatory Molecule. Previous phylogenetic studies of F. prausnitzii strains have revealed the existence of various phylogroups. In this work, we address the question of whether MAMs from different phylogroups display distinct anti-inflammatory properties. We first performed wide-scale identification, classification, and phylogenetic analysis of MAM-like proteins encoded in different genomes of F. prausnitzii. When combined with a gene context analysis, this approach distinguished at least 10 distinct clusters of MAMs, providing evidence for functional diversity within this protein. We then selected 11 MAMs from various clusters and evaluated their anti-inflammatory capacities in vitro. A wide range of anti-inflammatory activity was detected. MAM from the M21/2 strain had the highest inhibitory effect (96% inhibition), while MAM from reference strain A2-165 demonstrated only 56% inhibition, and MAM from strain CNCM4541 was almost inactive. These results were confirmed in vivo in murine models of acute and chronic colitis. This study provides insights into the family of MAM proteins and generates clues regarding the choice of F. prausnitzii strains as probiotics for use in targeting chronic inflammatory diseases.


Assuntos
Proteínas de Bactérias/genética , Faecalibacterium prausnitzii/metabolismo , Filogenia , Probióticos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/uso terapêutico , Sequência de Bases , Colite/tratamento farmacológico , Faecalibacterium prausnitzii/genética , Variação Genética , Genoma Bacteriano , Masculino , Camundongos , Análise de Sequência de DNA
17.
Epidemiol Mikrobiol Imunol ; 71(1): 48-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35477270

RESUMO

Research in the field of human microbiota and its impact on human health has opened new possibilities for the diagnosis, prevention or treatment of certain pathological conditions. A negative change in the composition of the intestinal microbiota, dysbiosis, is associated with diseases such as inflammatory bowel diseases, obesity, diabetes mellitus, or Clostridium difficile infections. For the use of human microbiota or its biologically active products in clinical practice, it is necessary to thoroughly identify and characterize properties that may be beneficial to human health. The use of the latest technology enables such research to be carried out, and we are already aware of several potential candidates for the so-called probiotics of the next generation. The aim of this article is to summarize available information on the bacteria Akkermansia muciniphila, Bacteroides fragilis, and Faecalibacterium prausnitzii, which are among the most promising and studied candidates.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bactérias , Bacteroides fragilis , Humanos , Obesidade , Probióticos/uso terapêutico
18.
Mol Med ; 27(1): 108, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525937

RESUMO

BACKGROUND: Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in this way to insulin resistance. METHODS: Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10-12 years old) and amino acid targeted metabolomics analysis was performed by LC-MS/MS in serum samples. By using the HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contributed to serum BCAA levels and insulin resistance markers. RESULTS: We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly, Faecalibacterium prausnitzii contributed to approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over an extended data set (N = 124). CONCLUSIONS: We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Faecalibacterium prausnitzii/fisiologia , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Aminoácidos de Cadeia Ramificada/metabolismo , Biomarcadores , Pesos e Medidas Corporais , Criança , Feminino , Humanos , Resistência à Insulina , Masculino , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Obesidade/metabolismo , Vigilância em Saúde Pública
19.
BMC Microbiol ; 21(1): 277, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635053

RESUMO

BACKGROUND: Fusobacterium nucleatum (F. n) is an important opportunistic pathogen causing oral and gastrointestinal disease. Faecalibacterium prausnitzii (F. p) is a next-generation probiotic and could serve as a biomarker of gut eubiosis/dysbiosis to some extent. Alterations in the human oral and gut microbiomes are associated with viral respiratory infection. The aim of this study was to characterise the oral and fecal bacterial biomarker (i.e., F. n and F. p) in COVID-19 patients by qPCR and investigate the pharyngeal microbiome of COVID-19 patients through metagenomic next-generation sequencing (mNGS). RESULTS: Pharyngeal F. n was significantly increased in COVID-19 patients, and it was higher in male than female patients. Increased abundance of pharyngeal F. n was associated with a higher risk of a positive SARS-CoV-2 test (adjusted OR = 1.32, 95% CI = 1.06 ~ 1.65, P < 0.05). A classifier to distinguish COVID-19 patients from the healthy controls based on the pharyngeal F. n was constructed and achieved an area under the curve (AUC) of 0.843 (95% CI = 0.688 ~ 0.940, P < 0.001). However, the level of fecal F. n and fecal F. p remained unaltered between groups. Besides, mNGS showed that the pharyngeal swabs of COVID-19 patients were dominated by opportunistic pathogens. CONCLUSIONS: Pharyngeal but not fecal F. n was significantly increased in COVID-19 patients, clinicians should pay careful attention to potential coinfection. Pharyngeal F. n may serve as a promising candidate indicator for COVID-19.


Assuntos
COVID-19/microbiologia , Fezes/microbiologia , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/genética , Faringe/microbiologia , Adulto , Biomarcadores/análise , COVID-19/virologia , Portador Sadio/microbiologia , Coinfecção/microbiologia , Coinfecção/virologia , Disbiose , Feminino , Infecções por Fusobacterium/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenômica , Microbiota , Pessoa de Meia-Idade , Faringe/virologia , Fatores Sexuais
20.
J Gastroenterol Hepatol ; 36(2): 320-328, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32815163

RESUMO

BACKGROUND AND AIM: We comprehensively carry out a systematic review and meta-analysis of previous studies to determine the association between intestinal Faecalibacterium prausnitzii (F. prausnitzii) and inflammatory bowel disease (IBD) in human studies. METHODS: A systematic literature search of PubMed, Embase, and the Cochrane Library database was conducted until April 1, 2020. Inclusion criteria were studies involving patients with Crohn's disease (CD) or ulcerative colitis (UC) with abundance of F. prausnitzii. The quality of the studies was assessed by the modified Newcastle-Ottawa scale. RESULTS: A total of 1669 subjects (427 CD patients, 560 UC patients, and 682 healthy controls) were enrolled from 16 studies. Both CD (standardized mean difference [SMD]: -1.36; 95% CI, -1.74 to -0.98; P < 0.00001) and UC patients (SMD: -0.81; 95% CI, -1.21 to -0.42; P < 0.0001) had a lower abundance of F. prausnitzii than the healthy controls. Compared with the IBD remission patients, the IBD active patients had lower levels of F. prausnitzii (SMD: -0.56; 95% CI, -0.91 to -0.21; P = 0.002). In the subgroup analyses, the abundance of F. prausnitzii was reduced in both active CD patients (SMD: -0.78; 95% CI, -1.51 to -0.04; P = 0.04) and active UC patients (SMD:-0.44; 95%CI, -0.81 to -0.07; P = 0.02) when compared with the patients with CD or UC in remission, respectively. CONCLUSION: A negative association between abundance of F. prausnitzii and IBD activity is observed, but a cut-off level of F. prausnitzii to diagnose and/or to start treating IBD is not determined.


Assuntos
Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Faecalibacterium prausnitzii/isolamento & purificação , Mucosa Intestinal/microbiologia , Faecalibacterium prausnitzii/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA