Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 76(6): 570-574, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069727

RESUMO

Palcewska et al. first demonstrated near infrared (NIR) visual response in human volunteers upon two-photon absorption (TPA), in a seminal work of 2014, and assessed the process in terms of wavelength- and power-dependence on murine ex-vivo retinas. In the present study, ex-vivo electroretinography (ERG) is further developed to perform a complete characterization of the effect of NIR pulse duration, energy, and focal spot size on the response. The same set of measurements is successively tested on living mice. We discuss how the nonlinear intensity dependence of the photon absorption process is transferred to the amplitude of the visual response acquired by ERG. Finally, we show that the manipulation of the spectral phase of NIR pulses can be translated to predictable change in the two-photon induced response under physiological excitation conditions.

2.
Front Chem ; 10: 1006637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712993

RESUMO

For studying any event, measurement can never be enough; "control" is required. This means mere passive tracking of the event is insufficient and being able to manipulate it is necessary. To maximize this capability to exert control and manipulate, both spatial and temporal domains need to be jointly accounted for, which has remained an intractable problem at microscopic scales. Simultaneous control of dynamics and position of an observable event requires a holistic combination of spatial and temporal control principles, which gives rise to the field of spatiotemporal control. For this, we present a novel femtosecond pulse-shaping approach. We explain how to achieve spatiotemporal control by spatially manipulating the system through trapping and subsequently or simultaneously exerting temporal control using shaped femtosecond pulses. By leveraging ultrafast femtosecond lasers, the prospect of having temporal control of molecular dynamics increases, and it becomes possible to circumvent the relaxation processes at microscopic timescales. Optical trapping is an exemplary demonstration of spatial control that results in the immobilization of microscopic objects with radiation pressure from a tightly focused laser beam. Conventional single-beam optical tweezers use continuous-wave (CW) lasers for achieving spatial control through photon fluxes, but these lack temporal control knobs. We use a femtosecond high repetition rate (HRR) pulsed laser to bypass this lack of dynamical control in the time domain for optical trapping studies. From a technological viewpoint, the high photon flux requirement of stable optical tweezers necessitates femtosecond pulse shaping at HRR, which has been a barrier until the recent Megahertz pulse shaping developments. Finally, recognizing the theoretical distinction between tweezers with femtosecond pulses and CW lasers is of paramount interest. Non-linear optical (NLO) interactions must be included prima facie to understand pulsed laser tweezers in areas where they excel, like the two-photon-fluorescence-based detection. We show that our theoretical model can holistically address the common drawback of all tweezers. We are able to mitigate the effects of laser-induced heating by balancing this with femtosecond laser-induced NLO effects. An interesting side-product of HRR femtosecond-laser-induced thermal lens is the development of femtosecond thermal lens spectroscopy (FTLS) and its ability to provide sensitive molecular detection.

3.
J Phys Chem Lett ; 6(19): 3867-72, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26722884

RESUMO

Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA