Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(7): e202300812, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38351400

RESUMO

Biocatalysis has emerged as a powerful alternative to traditional chemical methods, especially for asymmetric synthesis. As biocatalysts usually exhibit excellent chemical, regio- and enantioselectivity, they facilitate and simplify many chemical processes for the production of a broad range of products. Here, a new biocatalyst called, R-selective amine transaminases (R-ATAs), was obtained from Mycobacterium sp. ACS1612 (M16AT) using in-silico prediction combined with a genome and protein database. A two-step simple purification process could yield a high concentration of pure enzyme, suggesting that industrial application would be inexpensive. Additionally, the newly identified and characterized R-ATAs displayed a broad substrate spectrum and strong tolerance to organic solvents. Moreover, the synthetic applicability of M16AT has been demonstrated by the asymmetric synthesis of (R)-fendiline from of (R)-1-phenylethan-1-amine.


Assuntos
Aminas , Mycobacterium , Aminas/química , Transaminases/metabolismo , Especificidade por Substrato , Biocatálise
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201814

RESUMO

High-risk neuroblastoma (HR-NB) still remains the most dangerous tumor in early childhood. For this reason, the identification of new therapeutic approaches is of fundamental importance. Recently, we combined the conventional pharmacological approach to NB, represented by cisplatin, with fendiline hydrochloride, an inhibitor of several transporters involved in multidrug resistance of cancer cells, which demonstrated an enhancement of the ability of cisplatin to induce apoptosis. In this work, we co-administrated acetazolamide, a carbonic anhydrase isoform IX (CAIX) inhibitor which was reported to increase chemotherapy efficacy in various cancer types, to the cisplatin/fendiline approach in SKNBE2 xenografts in NOD-SCID mice with the aim of identifying a novel and more effective treatment. We observed that the combination of the three drugs increases more than twelvefold the differences in the cytotoxic activity of cisplatin alone, leading to a remarkable decrease of the expression of malignancy markers. Our conclusion is that this approach, based on three FDA-approved drugs, may constitute an appropriate improvement of the pharmacological approach to HR-NB.


Assuntos
Acetazolamida/farmacologia , Antineoplásicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Cisplatino/farmacologia , Fendilina/farmacologia , Neuroblastoma/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182713

RESUMO

Despite significant improvement of neuroblastoma (NB) patients' survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB's susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride as an enhancer of cisplatin antitumor activity. To assess the modulation of fendiline treatment on cisplatin responses, we used in vitro (evaluating NB cell proliferation by XCELLigence technology and colony formation, and gene expression by RT-PCR) and in vivo (NB cell grafts in NOD-SCID mice) models of NB. NB cell treatment with fendiline induced the expression of the ncRNA NDM29, leading to cell differentiation and to the reduction of the expression of MDRs/ABC transporters linked to multidrug resistance. These events were correlated to higher NB cell susceptibility to cisplatin and, consequently, increased its cytotoxic potency. In vivo, this drug interaction causes an enhanced ability of cisplatin to induce apoptosis in NB masses, resulting in tumor growth reduction and prolonged animal survival rate. Thus, the administration of fendiline might be a possible novel therapeutic approach to increase cisplatin efficacy in aggressive and poorly responsive NB cases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/administração & dosagem , Fendilina/administração & dosagem , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , RNA não Traduzido/metabolismo
4.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100813

RESUMO

The L-type calcium channel blocker fendiline has been shown to interfere with Ras-dependent signaling in K-Ras mutant cancer cells. Earlier studies from our lab had shown that treatment of pancreatic cancer cells with fendiline causes significant cytotoxicity and interferes with proliferation, survival, migration, invasion and anchorage independent growth. Currently there are no effective therapies to manage PDACs. As fendiline has been approved for treatment of patients with angina, we hypothesized that, if proven effective, combinatorial therapies using this agent would be easily translatable to clinic for testing in PDAC patients. Here we tested combinations of fendiline with gemcitabine, visudyne (a YAP1 inhibitor) or tivantinib (ARQ197, a c-Met inhibitor) for their effectiveness in overcoming growth and oncogenic characteristics of PDAC cells. The Hippo pathway component YAP1 has been shown to bypass K-Ras addiction, and allow tumor growth, in a Ras-null mouse model. Similarly, c-Met expression has been associated with poor prognosis and metastasis in PDAC patients. Our results presented here show that combinations of fendiline with these inhibitors show enhanced anti-tumor activity in Panc1, MiaPaCa2 and CD18/HPAF PDAC cells, as evident from the reduced viability, migration, anchorage-independent growth and self-renewal. Biochemical analysis shows that these agents interfere with various signaling cascades such as the activation of Akt and ERK, as well as the expression of c-Myc and CD44 that are altered in PDACs. These results imply that inclusion of fendiline may improve the efficacy of various chemotherapeutic agents that could potentially benefit PDAC patients.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Fendilina/farmacologia , Pirrolidinonas/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Verteporfina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinógenos , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfoproteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas de Sinalização YAP , Gencitabina
5.
Eur J Med Chem ; 217: 113381, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756124

RESUMO

KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fendilina/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Fendilina/análogos & derivados , Fendilina/química , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
6.
Int J Antimicrob Agents ; 48(1): 69-77, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27289450

RESUMO

The fungal pathogen Cryptococcus neoformans poses a major threat to immunocompromised patients and is a leading killer of human immunodeficiency virus (HIV)-infected patients worldwide. Cryptococci are known to manipulate host macrophages and can either remain latent or proliferate intracellularly within the host phagocyte, a favourable niche that also renders them relatively insensitive to antifungal agents. Here we report an attempt to address this limitation by using a fluorescence-based drug screening method to identify potential inhibitors of intracellular proliferation of C. neoformans. The Prestwick Chemical Library(®) of FDA-approved small molecules was screened for compounds that limit the intracellular replication of a fluorescently-tagged C. neoformans reference strain (H99-GFP) in macrophages. Preliminary screening revealed 19 of 1200 compounds that could significantly reduce intracellular growth of the pathogen. Secondary screening and host cell cytotoxicity assays highlighted fendiline hydrochloride as a potential drug candidate for the development of future anticryptococcal therapies. Live cell imaging demonstrated that this Ca(2+) channel blocker strongly enhanced phagosome maturation in macrophages leading to improved fungal killing and reduced intracellular replication. Whilst the relatively high dose of fendiline hydrochloride required renders it unfit for clinical deployment against cryptococcosis, this study highlights a novel approach for identifying new lead compounds and unravels a pharmacologically promising scaffold towards the development of novel antifungal therapies for this neglected disease.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Técnicas Citológicas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Macrófagos/microbiologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos
7.
Psychopharmacology (Berl) ; 232(24): 4401-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26345344

RESUMO

RATIONALE: L-type Ca(2+) channels (LTCC) and GABAB receptors are both possible targets in the development of new pharmacological compounds for cocaine addiction. Drugs that target either receptor attenuate a wide range of cocaine-seeking behaviors in the rat. However, there is no current human-approved pharmacotherapeutic intervention for psychostimulant addiction. OBJECTIVES: This study examined the effects of a human-approved LTCC blocker, fendiline, on cocaine-taking and cocaine-seeking behavior in rats. The effects of combining fendiline with the GABAB receptor agonist baclofen on cocaine self-administration were also tested. METHODS: Male Wistar rats were trained to self-administer cocaine, and the effects of fendiline pretreatment (vehicle, 1.78, 3.16, 5.62 mg/kg, intraperitoneal (IP)) were tested on progressive ratio responding and cue- and drug-induced reinstatement. The effects of baclofen (vehicle, 0.56, 1.78, 3.16, 5.62 mg/kg, IP) combined with fendiline (5.62 mg/kg, IP) were tested on progressive ratio responding. Control experiments measured locomotor activity and lever pressing for food in rats that received both baclofen and fendiline prior to the test session. RESULTS: Acute injections of fendiline prior to cue- or drug-induced reinstatement significantly attenuated lever-pressing behavior (p < 0.05). Fendiline and baclofen, but not fendiline alone, not only significantly attenuated breakpoints, but also impaired general motor behavior and naturalistic reinforcement (p < 0.05). CONCLUSION: These data suggest that the LTCC blocker fendiline may represent a novel pharmacotherapeutic intervention to prevent reinstatement to cocaine seeking. Also, co-administration of fendiline and baclofen not only can attenuate the motivation to take cocaine, but also impairs general motor behavior and naturalistic reinforcement.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Fendilina/farmacologia , Animais , Baclofeno/farmacologia , Comportamento Aditivo/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Sinais (Psicologia) , Extinção Psicológica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Reforço Psicológico , Autoadministração
8.
Enzymes ; 33 Pt A: 249-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25033808

RESUMO

Oncogenic mutant K-Ras is highly prevalent in multiple human tumors. Despite significant efforts to directly target Ras activity, no K-Ras-specific inhibitors have been developed and taken into the clinic. Since Ras proteins must be anchored to the inner leaflet of the plasma membrane (PM) for full biological activity, we devised a high-content screen to identify molecules with ability to displace K-Ras from the PM. Here we summarize the biochemistry and biology of three classes of compound identified by this screening method that inhibit K-Ras PM targeting: staurosporine and analogs, fendiline, and metformin. All three classes of compound significantly abrogate cell proliferation and Ras signaling in K-Ras-transformed cancer cells. Taken together, these studies provide an important proof of concept that blocking PM localization of K-Ras is a tractable therapeutic target.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Neoplasias/tratamento farmacológico , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas ras/antagonistas & inibidores , Animais , Humanos , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA