Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Nano Lett ; 24(10): 2980-2988, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311846

RESUMO

The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.


Assuntos
Antibacterianos , Antifúngicos , Fibras Ópticas , Testes de Sensibilidade Microbiana , Candida albicans , Escherichia coli
2.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894393

RESUMO

As the global aging population increases, the demand for rehabilitation of elderly hand conditions has attracted increased attention in the field of wearable sensors. Owing to their distinctive anti-electromagnetic interference properties, high sensitivity, and excellent biocompatibility, optical fiber sensors exhibit substantial potential for applications in monitoring finger movements, physiological parameters, and tactile responses during rehabilitation. This review provides a brief introduction to the principles and technologies of various fiber sensors, including the Fiber Bragg Grating sensor, self-luminescent stretchable optical fiber sensor, and optic fiber Fabry-Perot sensor. In addition, specific applications are discussed within the rehabilitation field. Furthermore, challenges inherent to current optical fiber sensing technology, such as enhancing the sensitivity and flexibility of the sensors, reducing their cost, and refining system integration, are also addressed. Due to technological developments and greater efforts by researchers, it is likely that wearable optical fiber sensors will become commercially available and extensively utilized for rehabilitation.


Assuntos
Fibras Ópticas , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Tecnologia de Fibra Óptica/instrumentação , Reabilitação/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
3.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475206

RESUMO

A greenhouse gas sensor has been developed to simultaneously detect multiple gas species within a hollow-core photonic bandgap fiber (HC-PBF) structure entirely composed of fibers. To enhance sensitivity, the gas cell consists of HC-PBF enclosed between two single-mode fibers fused with a reflective end surface to double the absorption length. The incorporation of side holes for gas diffusion allows for analysis of the relationship between gas diffusion speed, number of drilled side holes, and energy loss. As the number of drilled holes increases, the response time decreases to less than 3 min at the expense of energy loss. Gas experiments demonstrated detection limits of 0.1 ppm for methane and 2 ppm for carbon dioxide, with an average time of 50 s. In-situ testing conducted in rice fields validates the effectiveness of the developed gas detection system using HC-PBF cells, establishing all-fiber sensors with high sensitivity and rapid response.

4.
Sensors (Basel) ; 24(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794083

RESUMO

In this paper, a new sensor is proposed to efficiently gather crucial information on corrosion phenomena and their progression within steel components. Fabricated with plastic optical fibers (POF), the sensor can detect corrosion-induced physical changes in the appearance of monitoring points within the steel material. Additionally, the new sensor incorporates an innovative structure that efficiently utilizes bi-directional optical transmission in the POF, simplifying the installation procedure and reducing the total cost of the POF cables by as much as 50% when monitoring multiple points. Furthermore, an extremely compact dummy sensor with the length of 5 mm and a diameter of 2.2 mm for corrosion-depth detection was introduced, and its functionality was validated through experiments. This paper outlines the concept and fundamental structure of the proposed sensor; analyzes the results of various experiments; and discusses its effectiveness, prospects, and economic advantages.

5.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894062

RESUMO

A solar position sensor is an essential optoelectronic device used to monitor the sun's position in solar tracking systems. In closed-loop systems, this sensor is responsible for providing feedback signals to the control system, allowing motor adjustments to optimize the angle of incidence and minimize positioning errors. The accuracy required for solar tracking systems varies depending on the specific photovoltaic concentration. In the case of the concentrator photovoltaic (CPV), it is normally essential to track the sun with a position error of less than ±0.6°. To achieve such precision, a proposed sensor configuration composed of low-cost embedded electronics and multifiber optical cable is subjected to characterization through a series of measurements covering range, sensitivity, and resolution. These measurements are performed in controlled indoor environments as well as outdoor conditions. The results obtained exhibit a resolution of 2.6×10-3 degrees when the sensor is illuminated within its designated field of view of ±0.1°, particularly in external conditions. Considering the performance demonstrated by the proposed solar position sensor, coupled with its straightforward modeling and assembly compared to position sensors documented in the literature, it emerges as a promising candidate for integration into solar tracking systems.

6.
Sensors (Basel) ; 24(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39065930

RESUMO

With the increase in the demand for large-capacity optical communication capacity, multi-core optical fiber (MCF) communication technology has developed, and both the types of MCFs and related devices have become increasingly mature. The application of MCFs in the field of sensing has also received more and more attention, among which MCF fiber Bragg grating (FBG) devices have received more and more attention and have been widely used in various fields. In this paper, the main writing methods of MCF FBGs and their sensing applications are reviewed. The future development of the MCF FBG is also prospected.

7.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275532

RESUMO

This article presents a long-period fiber-grating sensor based on a congruent quasi-helical structure (CQH-LPFG) with the two-parameter measurement of both temperature and curvature. The CQH-LPFG sensor was manufactured using a high-frequency CO2 laser, and an innovative quasi-helical structure was introduced into the two-parameter measurement of the temperature and curvature of the optical fiber sensor with excellent results. The experiment and analysis demonstrate that the curvature sensitivities of the three resonance peaks in the 1440 nm to 1540 nm transmission spectrum were 11.88 nm/m-1, 8.05 nm/m-1, and 11.11 nm/m-1, and the curvature varied ranging from 0.156 m-1 to 0.494 m-1. The three resonance peaks showed temperature responsivities of 29.87 pm/°C, 24.65 pm/°C, and 36.85 pm/°C, respectively, and the linear fit was of excellent quality. In the case of measuring both curvature and temperature changes simultaneously, the resonant peak wavelength of the CQH-LPFG sensor was demodulated through matrix analysis, with dip A and dip C providing superior simultaneous measurements. These features make it a promising candidate for applications such as engineering machinery and the health inspection of buildings.

8.
Sensors (Basel) ; 24(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475198

RESUMO

An optical fiber pH sensor based on a long-period fiber grating (LPFG) is reported. Two oppositely charged polymers, polyethylenimine (PEI) and polyacrylic acid (PAA), were alternately deposited on the sensing structure through a layer-by-layer (LbL) electrostatic self-assembly technique. Since the polymers are pH sensitive, their refractive index (RI) varies when the pH of the solution changes due to swelling/deswelling phenomena. The fabricated multilayer coating retained a similar property, enabling its use in pH-sensing applications. The pH of the PAA dipping solution was tuned so that a coated LPFG achieved a pH sensitivity of (6.3 ± 0.2) nm/pH in the 5.92-9.23 pH range. Only two bilayers of PEI/PAA were used as an overlay, which reduces the fabrication time and increases the reproducibility of the sensor, and its reversibility and repeatability were demonstrated by tracking the resonance band position throughout multiple cycles between different pH solutions. With simulation work and experimental results from a low-finesse Fabry-Perot (FP) cavity on a fiber tip, the coating properties were estimated. When saturated at low pH, it has a thickness of 200 nm and 1.53 ± 0.01 RI, expanding up to 310 nm with a 1.35 ± 0.01 RI at higher pH values, mostly due to the structural changes in the PAA.

9.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676193

RESUMO

An external cavity wavelength-fiber ring laser (ECWTFL) based on a semiconductor optical amplifier and a combined wavelength scanning filter in the Littrow configuration is proposed and experimentally demonstrated. With the benefit of the combination of an external cavity wavelength filter and a Lyot filter, the laser achieves a single-mode narrow linewidth output with a linewidth of 1.75 kHz. The wavelength tuning range reaches 133 nm, covering the entire S + C band. The proposed ECWTFL is used for demodulation of a fiber EFPI sensor; the result shows that the proposed ECWTFL has the ability to demodulate the small cavity-length FPI sensor.

10.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732777

RESUMO

Optical fiber sensors are extensively employed for their unique merits, such as small size, being lightweight, and having strong robustness to electronic interference. The above-mentioned sensors apply to more applications, especially the detection and monitoring of vital signs in medical or clinical. However, it is inconvenient for daily long-term human vital sign monitoring with conventional monitoring methods under the uncomfortable feelings generated since the skin and devices come into direct contact. This study introduces a non-invasive surveillance system that employs an optical fiber sensor and advanced deep-learning methodologies for precise vital sign readings. This system integrates a monitor based on the MZI (Mach-Zehnder interferometer) with LSTM networks, surpassing conventional approaches and providing potential uses in medical diagnostics. This could be potentially utilized in non-invasive health surveillance, evaluation, and intelligent health care.


Assuntos
Aprendizado Profundo , Fibras Ópticas , Sinais Vitais , Humanos , Sinais Vitais/fisiologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Redes Neurais de Computação
11.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339602

RESUMO

The timely and cost-effective identification of the onset of corrosion and its progress would be critical for effectively maintaining structural integrity. Consequently, a series of fundamental experiments were conducted to capture the corrosion process on a steel plate using a new type of plastic optical fiber (POF) sensor. Electrolytic corrosion experiments were performed on a 5 mm thick steel plate immersed in an aqueous solution. The POF sensor installed on the upper side of the plate and directed downward detected the upward progression of the corrosion zone that formed on the underside of the plate. The results showed that the POF sensors could detect the onset of the upward-progressing corrosion front as it passed the 1 and 2 mm marks related to the thickness of the corroded zone. The POF sensors were designed to optically identify corrosion; therefore, the data obtained by these sensors could be processed using a newly developed graphic application software for smartphones and also identified by the naked eye. This method offered an easy and cost-effective solution for verifying the corrosion state of structural components.

12.
Sensors (Basel) ; 24(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203139

RESUMO

A novel label-free optical fiber biosensor, based on a microcavity fiber Mach-Zehnder interferometer, was developed and practically demonstrated for DNA detection. The biosensor was fabricated using offset splicing standard communication single-mode fibers (SMFs). The light path of the sensor was influenced by the liquid sample in the offset open cavity. In the experiment, a high sensitivity of -17,905 nm/RIU was achieved in the refractive index (RI) measurement. On this basis, the probe DNA (pDNA) was immobilized onto the sensor's surface using APTES, enabling real-time monitoring of captured complementary DNA (cDNA) samples. The experimental results demonstrate that the biosensor exhibited a high sensitivity of 0.32 nm/fM and a limit of detection of 48.9 aM. Meanwhile, the sensor has highly repeatable and specific performance. This work reports an easy-to-manufacture, ultrasensitive, and label-free DNA biosensor, which has significant potential applications in medical diagnostics, bioengineering, gene identification, environmental science, and other biological fields.


Assuntos
Engenharia Biomédica , Comércio , DNA Complementar , Fibras Ópticas
13.
Sensors (Basel) ; 24(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38610552

RESUMO

Ground settlement (GS) in an oil tank determines its structural integrity and commercial service. However, GS monitoring faces challenges, particularly due to the significant temperature differences induced by solar radiation around the tank in daytime. To address this problem, this paper digs out a prior and proposes a temperature uncertainty reduction algorithm based on that. This prior has a spatial Gaussian distribution of temperature around the tank, and numerical simulation and practical tests are conducted to demonstrate it. In addition, combining uniformly packaged sensor probes and the spatial prior of temperature, the temperature uncertainty is verified to be Gaussian-distributed too. Then, the overall temperature uncertainty can be captured by Gaussian fitting and then removed. The practical test verified a 91% reduction rate in temperature uncertainty, and this approach enables GS sensors to effectively perform daytime monitoring by mitigating temperature-related uncertainties.

14.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676141

RESUMO

In the automotive industry, there has been considerable focus on developing various sensors for engine oil monitoring. However, when it comes to monitoring the condition of brake fluid, which is crucial for ensuring safety, there has been a lack of a secure online method for this monitoring. This study addresses this gap by developing a hybrid silica nanofiber mat, or an aerogel integrated with an optical fiber sensor, to monitor brake fluid condition. The incorporation of silica nanofibers in this hybrid enhances the sensitivity of the optical fiber glass surface by at least 3.75 times. Furthermore, creating an air gap between the glass surface of the optical fiber and the nanofibers boosts sensitivity by at least 5 times, achieving a better correlation coefficient (R2 = 0.98). In the case of silica aerogel, the sensitivity is enhanced by 10 times, but this enhancement relies on the presence of the established air gap. The air gap was adjusted to range from 0.5 mm to 1 mm, without any significant change in the measurement within this range. The response time of the developed sensor is a minimum of 15 min. The sensing material is irreversible and has a diameter of 2.5 mm, making it easily replaceable. Overall, the sensor demonstrates strong repeatability, with approximately 90% consistency, and maintains uncertainty levels below 5% across specific ranges: from 3% to 6% for silica aerogel and from 5% to 6% for silica nanofibers in the presence of an air gap. These findings hold promise for integrating such an optical fiber sensor into a car's electronic system, enabling the direct online monitoring of brake fluid quality. Additionally, the study elucidates the effect of water absorption on the refractive index of brake fluid, as well as on the silica nanomaterials.

15.
Sensors (Basel) ; 24(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39338826

RESUMO

Underground telecommunication cables are highly susceptible to damage from excavation activities. Preventing accidental damage to underground telecommunication cables is critical and necessary. In this study, we present field trial results of monitoring excavation activities near underground fiber cables using an intensity-based phase-sensitive optical time-domain reflectometer (φ-OTDR). The reasons for choosing intensity-based φ-OTDR for excavation monitoring are presented and analyzed. The vibration signals generated by four typical individual excavation events, i.e., cutting, hammering, digging, and tamping at five different field trial sites, as well as five different mixed events in the fifth field trial site were investigated. The findings indicate that various types of events can generate vibration signals with different features. Typically, fundamental peak frequencies of cutting, hammering and tamping events ranged from 30 to 40 Hz, 11 to 15 Hz, and 30 to 40 Hz, respectively. Digging events, on the other hand, presented a broadband frequency spectrum without a distinct peak frequency. Moreover, due to differences in environmental conditions, even identical excavation events conducted with the same machine may also generate vibration signals with different characteristics. The diverse field trial results presented offer valuable insights for both research and the practical implementation of excavation monitoring techniques for underground cables.

16.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39275493

RESUMO

A novel highly sensitive D-shaped photonic crystal fiber-based surface plasmon resonance (PCF-SPR) sensor for dual parameters of refractive index and temperature detecting is proposed. A PCF cladding polishing provides a D-shape design with a gold (Au) film coating for refractive index (RI) sensing (Core 1) and a composite film of silver (Ag) and polydimethylsiloxane (PDMS) for temperature sensing (Core 2). Comsol Multiphysics 5.5 is used to design and simulate the proposed sensor by the finite element method (FEM). The proposed sensor numerically provides results with maximum wavelength sensitivities (WSs) of 51,200 and 56,700 nm/RIU for Core 1 and 2 as RI sensing while amplitude sensitivities are -98.9 and -147.6 RIU-1 with spectral resolution of 1.95 × 10-6 and 1.76 × 10-6 RIU, respectively. Notably, wavelength sensitivity of 17.4 nm/°C is obtained between -20 and -10 °C with resolution of 5.74 × 10-3 °C for Core 2 as temperature sensing. This sensor can efficiently work in the analyte and temperature ranges of 1.33-1.43 RI and -20-100 °C. Due to its high sensitivity and wide detection ranges, both in T and RI sensing, it is a promising candidate for a variety of applications, including chemical, medical, and environmental detection.

17.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544029

RESUMO

In this article, we propose and demonstrate a probe-type multi-core fiber (MCF) sensor for the multi-parameter measurement of seawater. The sensor comprises an MCF and two capillary optical fibers (COFs) with distinct inner diameters, in which a 45° symmetric core reflection (SCR) structure and a step-like inner diameter capillary (SIDC) structure filled with polydimethylsiloxane (PDMS) are fabricated at the fiber end. The sensor is equipped with three channels for different measurements. The surface plasmon resonance (SPR) channel (CHSPR) based on the side-polished MCF is utilized for salinity measurement. The fiber end air cavity, forming the Fabry-Pérot interference (FPI) channel (CHFPI), is utilized for pressure and temperature measurement. Additionally, the fiber Bragg grating (FBG) channel (CHFBG), which is inscribed in the central core, serves as temperature compensation for the measurement results. By combining three sensing principles with space division multiplexing (SDM) technology, the sensor overcomes the common challenges faced by multi-parameter sensors, such as channel crosstalk and signal demodulation difficulties. The experimental results indicate that the sensor has sensitivities of 0.36 nm/‱, -10.62 nm/MPa, and -0.19 nm/°C for salinity, pressure, and temperature, respectively. As a highly integrated and easily demodulated probe-type optical fiber sensor, it can serve as a valuable reference for the development of multi-parameter fiber optic sensors.

18.
Exp Dermatol ; 32(12): 2112-2120, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37859506

RESUMO

Skin expands and regenerates in response to mechanical stretch. This important homeostasis process is critical for skin biology and can be exploited to generate extra skin for reconstructive surgery. Atmospheric oxygen uptake is important in skin homeostasis. However, whether and how cutaneous atmospheric oxygen uptake changes during mechanical stretch remains unclear, and relevant research tools to quantify oxygen flux are limited. Herein, we used the scanning micro-optrode technique (SMOT), a non-invasive self-referencing optical fiber microsensor, to achieve real-time measurement of cutaneous oxygen uptake from the atmosphere. An in vivo mechanical stretch-induced skin expansion model was established, and an in vitro Flexcell Tension system was used to stretch epidermal cells. We found that oxygen influx of skin increased dramatically after stretching for 1 to 3 days and decreased to the non-stretched level after 7 days. The enhanced oxygen influx of stretched skin was associated with increased epidermal basal cell proliferation and impaired epidermal barrier. In conclusion, mechanical stretch increases cutaneous oxygen uptake with spatial-temporal characteristics, correlating with cell proliferation and barrier changes, suggesting a fundamental mechanistic role of oxygen uptake in the skin in response to mechanical stretch. Optical fiber microsensor-based oxygen uptake detection provides a non-invasive approach to understand skin homeostasis.


Assuntos
Fibras Ópticas , Pele , Epiderme , Proliferação de Células , Oxigênio , Estresse Mecânico
19.
Sensors (Basel) ; 24(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203045

RESUMO

A high-sensitivity curvature sensor with dual-parameter measurement ability based on angularly cascaded long-period fiber grating (AC-LPFG) is proposed and experimentally demonstrated, which consists of two titled LPFGs (TLPFGs) with different tilt angles and the same grating period. AC-LPFG was fabricated by using a deep ultraviolet laser and an amplitude-mask in our laboratory. The experimental results show that simultaneous measurement of curvature and temperature can be achieved by monitoring the wavelengths of two resonant peaks for different TLPFGs. The two peaks show opposite shifts with increasing curvature and has a maximum curvature sensitivity of 16.392 nm/m-1. With the advantages of low cost, high sensitivity, and dual-parameter measurements, our sensor has more potential for engineering applications.

20.
Sensors (Basel) ; 23(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631556

RESUMO

A label-free-based fiber optic biosensor based on etched tilted Bragg fiber grating (TFBG) is proposed and practically demonstrated. Conventional phase mask technic has been utilized to inscribe tilted fiber Bragg grating with a tilt angle of 10°, while the etching has been accomplished with hydrofluoric acid. A composite of polyethylenimine (PEI)/poly(acrylic acid) (PAA) has been thermally deposited on the etched TFBG, followed by immobilization of probe DNA (pDNA) on this deposited layer. The hybridization of pDNA with the complementary DNA (cDNA) has been monitored using wavelength-dependent interrogation. The reproducibility of the probes has been demonstrated by fabricating three identical probes and their response has been investigated for cDNA concentration ranging from 0 µM to 3 µM. The maximum sensitivity has been found to be 320 pm/µM, with the detection limit being 0.65 µM. Furthermore, the response of the probes towards non-cDNA has also been investigated in order to establish its specificity.


Assuntos
DNA , Tecnologia de Fibra Óptica , Reprodutibilidade dos Testes , DNA Complementar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA