Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542891

RESUMO

There is a strong need to develop an insulin delivery system suitable for oral administration and preserving natural (α-helix) insulin conformation. In this work, we fabricated alginate-gelatin hydrogel beads for insulin encapsulation. Altering matrix composition and crosslinking agents has resulted in various surface morphologies and internal spatial organization. The structures of the insulin-loaded matrices were studied using optical and field emission electronic microscopy. We use FTIR spectroscopy to identify insulin conformation changes as affected by the hydrogel matrices. It was found that blended alginate-gelatin matrices demonstrate better encapsulation efficiency and stronger swelling resistance to a simulated gastric environment than sodium alginate beads crosslinked with the CaCl2. FTIR measurements reveal conformation changes in insulin. It is also confirmed that in the presence of gelatin, the process of insulin fibrinogenesis ceases due to intermolecular interaction with the gelatin. Performed molecular modeling shows that dipole-dipole interactions are the dominating mechanism that determines insulin behavior within the fabricated matrix.


Assuntos
Hidrogéis , Insulina , Hidrogéis/química , Gelatina/química , Alginatos/química
2.
Thromb J ; 18: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061857

RESUMO

Disseminated intravascular coagulation (DIC) can be correctly redefined as disseminated intravascular microthrombosis based on "two-path unifying theory" of in vivo hemostasis. "DIC" is a form of vascular microthrombotic disease characterized by "microthrombi" composed of platelets and unusually large von Willebrand factor multimers (ULVWF). Microthrombotic disease includes not only "DIC", but also microthrombosis occurring in thrombotic thrombocytopenic purpura (TTP), TTP-like syndrome, and focal, multifocal and localized microthrombosis. Being a hemostatic disease, microthrombotic disease occurs as a result of lone activation of ULVWF path via partial in vivo hemostasis. In endothelial injury associated with critical illnesses such as sepsis, the vascular damage is limited to the endothelial cell and activates ULVWF path. In contrast, in intravascular traumatic injury, the local damage may extend from the endothelial cell to subendothelial tissue and sometimes beyond, and activates both ULVWF and tissue factor (TF) paths. When endotheliopathy triggers exocytosis of ULVWF and recruits platelets, ULVWF path is activated and promotes microthrombogenesis to produce microthrombi composed of microthrombi strings, but when localized vascular damage causes endothelial and subendothelial tissue damage, both ULVWF and TF paths are activated and promote macrothrombogenesis to produce macrothrombus made of complete "blood clots". Currently, "DIC" concept is ascribed to activated TF path leading to fibrin clots. Instead, it should be correctly redefined as microthrombosis caused by activation of ULVWF path, leading to endotheliopathy-associated microthrombosis. The correct term for acute "DIC" is disseminated microthrombosis-associated hepatic coagulopathy, and that for chronic "DIC" is disseminated microthrombosis without hepatic coagulopathy. TTP-like syndrome is hematologic phenotype of endotheliopathy-associated microthrombosis. This correct concept of "DIC" is identified from novel theory of "in vivo hemostasis", which now can solve every mystery associated with "DIC" and other associated thrombotic disorders. Thus, sepsis-associated coagulopathy is not "DIC", but is endotheliopathy-associated vascular microthrombotic disease.

3.
J Biol Chem ; 289(10): 6526-6534, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24443567

RESUMO

Coagulation factor XIII (FXIII) is a transglutaminase with a well defined role in the final stages of blood coagulation. Active FXIII (FXIIIa) catalyzes the formation of ε-(γ-glutamyl)lysine isopeptide bonds between specific Gln and Lys residues. The primary physiological outcome of this catalytic activity is stabilization of the fibrin clot during coagulation. The stabilization is achieved through the introduction of cross-links between fibrin monomers and through cross-linking of proteins with anti-fibrinolytic activity to fibrin. FXIIIa additionally cross-links several proteins with other functionalities to the clot. Cross-linking of proteins to the clot is generally believed to modify clot characteristics such as proteolytic susceptibility and hereby affect the outcome of tissue damage. In the present study, we use a proteomic approach in combination with transglutaminase-specific labeling to identify FXIIIa plasma protein substrates and their reactive residues. The results revealed a total of 147 FXIIIa substrates, of which 132 have not previously been described. We confirm that 48 of the FXIIIa substrates were indeed incorporated into the insoluble fibrin clot during the coagulation of plasma. The identified substrates are involved in, among other activities, complement activation, coagulation, inflammatory and immune responses, and extracellular matrix organization.


Assuntos
Coagulação Sanguínea/fisiologia , Proteínas Sanguíneas/metabolismo , Fator XIIIa/metabolismo , Proteoma/metabolismo , Humanos , Especificidade por Substrato
4.
Front Med (Lausanne) ; 10: 1206362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425313

RESUMO

Macrophages (Mø) are widely considered fundamental in the development of kidney fibrosis since Mø accumulation commonly aggravates kidney fibrosis, while Mø depletion mitigates it. Although many studies have aimed to elucidate Mø-dependent mechanisms linked to kidney fibrosis and have suggested various mechanisms, the proposed roles have been mostly passive, indirect, and non-unique to Mø. Therefore, the molecular mechanism of how Mø directly promote kidney fibrosis is not fully understood. Recent evidence suggests that Mø produce coagulation factors under diverse pathologic conditions. Notably, coagulation factors mediate fibrinogenesis and contribute to fibrosis. Thus, we hypothesized that kidney Mø express coagulation factors that contribute to the provisional matrix formation during acute kidney injury (AKI). To test our hypothesis, we probed for Mø-derived coagulation factors after kidney injury and uncovered that both infiltrating and kidney-resident Mø produce non-redundant coagulation factors in AKI and chronic kidney disease (CKD). We also identified F13a1, which catalyzes the final step of the coagulation cascade, as the most strongly upregulated coagulation factor in murine and human kidney Mø during AKI and CKD. Our in vitro experiments revealed that the upregulation of coagulation factors in Mø occurs in a Ca2 + -dependent manner. Taken together, our study demonstrates that kidney Mø populations express key coagulation factors following local injury, suggesting a novel effector mechanism of Mø contributing to kidney fibrosis.

5.
Cancer Lett ; 553: 215983, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36404569

RESUMO

Peritoneal metastasis is one of the most frequent causes of death in several types of advanced cancers; however, the underlying molecular mechanisms remain largely unknown. In this study, we exploited multicolor fluorescent lineage tracking to investigate the clonality of peritoneal metastasis in mouse xenograft models. When peritoneal metastasis was induced by intraperitoneal or orthotopic injection of multicolored cancer cells, each peritoneally metastasized tumor displayed multicolor fluorescence regardless of metastasis sites, indicating that it consists of multiclonal cancer cell populations. Multicolored cancer cell clusters form within the peritoneal cavity and collectively attach to the peritoneum. In vitro, peritoneal lavage fluid or cleared ascitic fluid derived from cancer patients induces cancer cell clustering, which is inhibited by anticoagulants. Cancer cell clusters formed in vitro and in vivo are associated with fibrin formation. Furthermore, tissue factor knockout in cancer cells abrogates cell clustering, peritoneal attachment, and peritoneal metastasis. Thus, we propose that cancer cells activate the coagulation cascade via tissue factor to form fibrin-mediated cell clusters and promote peritoneal attachment; these factors lead to the development of multiclonal peritoneal metastasis and may be therapeutic targets.


Assuntos
Neoplasias Peritoneais , Peritônio , Camundongos , Animais , Humanos , Peritônio/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo , Tromboplastina/uso terapêutico , Fibrinogênio , Neoplasias Peritoneais/patologia , Análise por Conglomerados , Fibrina/metabolismo , Fibrina/uso terapêutico
6.
Cureus ; 15(10): e47899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034260

RESUMO

Background Chewing areca nuts can result in an oral disorder known as oral submucous fibrosis (OSF), which has the potential to be cancerous. Although it is only beginning to spread to European and the North American continents, it is highly prevalent in Southeast Asia. The probability of malignant transformation from OSF is raised by chewing tobacco use. In the current research, our objective was to assess the potential anti-fibrosis effects and the ability to prevent malignant transformation through the application of mangosteen pericarp extract. Methodology The Ethical Approval-IHEC/SDC/OMED-2101/23/085 from the institution was obtained to conduct this ex vivo study. The cytotoxicity effect of mangosteen pericarp extract on both normal and fibrotic buccal mucosal fibroblasts originating from OSF tissues was tested. Cell proliferation and cell migration by scratch wound healing assay was examined. Dual staining was done to determine the mode of cell death. Additionally, real-time PCR was utilized to measure the expression of TGF-ß/Smad2/3 signalling, α-SMA, and type I collagen gene expression. Results Mangosteen extract exerted higher cytotoxicity of fibrotic buccal mucosal fibroblasts compared to normal cells. Furthermore, mangosteen-receiving cells exhibited downregulation in the expression of the TGF-ß/Smad2 pathway, as well as reduced expression of α-SMA and type I collagen. Conclusion Findings from this study suggest that mangosteen could serve as a promising agent for averting the progression of oral fibrogenesis and halting the malignancy of the oral epithelium in patients with OSF.

7.
Int J Numer Method Biomed Eng ; 38(11): e3652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167948

RESUMO

Fibrin is an important product of the coagulation cascade, and plays an eminent role in platelet stabilization. Since coagulation cascade models typically involve the reaction kinetics of dozens of proteins, which will incur burdensome computational costs when coupled to blood flow in complex geometries, researchers often ignore this process when constructing thrombosis models. However, previous studies have shown that fundamental aspects of coagulation can be reproduced with simpler models, which motivated us to obtain a reduced-order model of fibrin generation through a systematic approach. Therefore, we introduced a semi-automatic framework to perform model-reduction of cascade reactions in this study, which consisted of two processes. Specifically, the retained protein species and cascade reactions were determined based on published studies and simulation results from the full cascade model, while the optimal reaction rates for the new cascade network were determined using a genetic algorithm. The framework has been applied to a 19-species coagulation model that triggers fibrin generation in internal fields via reactive boundaries, and a 10-species reduced-order model was obtained to reproduce the kinetics of fibrinogenesis in the full cascade model at different boundary tissue factor concentrations. This reduced-order model of fibrinogenesis would be valuable for thrombosis modeling that considers both the coagulation cascade and platelet activity. Furthermore, the framework proposed herein can also be applied to the reductions of other cascade reaction models.


Assuntos
Coagulação Sanguínea , Trombose , Humanos , Coagulação Sanguínea/fisiologia , Fibrina/metabolismo , Plaquetas/metabolismo , Algoritmos
8.
Biomedicines ; 10(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009382

RESUMO

This study focused on a coagulation assessment based on the novel technique of blood-impedance-magnitude measurement. With the impedance characterization of recalcified human blood, it was possible to identify two significative biomarkers (i.e., measurable indicators) related to fibrin formation (1st marker) and clot retraction (2nd marker). The confocal microscopy of clotting blood provided a complete visual analysis of all the events occurring during coagulation, validating the significance of the impedance biomarkers. By analyzing the impedance phase angle (Φ) of blood during coagulation, as well as those of the clot and serum expelled after retraction, it was possible to further clarify the origin of the 2nd marker. Finally, an impedance-magnitude analysis and a rotational thromboelastometry test (ROTEM®) were simultaneously performed on blood sampled from the same donor; the results pointed out that the 1st marker was related to clotting time. The developed technique gives rise to a comprehensive and evolutive insight into coagulation, making it possible to progressively follow the whole process in real time. Moreover, this approach allows coagulation to be tested on any materials' surface, laying the ground for new studies related to contact coagulation, meaning, thrombosis occurring on artificial implants. In a near future, impedance spectroscopy could be employed in the material characterization of cardiovascular prostheses whose properties could be monitored in situ and/or online using effective biomarkers.

9.
Biomedicines ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359229

RESUMO

Thrombosis, the common and deadliest disorder among human diseases, develops as a result of the intravascular hemostasis following an intravascular injury, which can be caused by a variety of trauma, non-traumatic insults or clinical illnesses. Thrombosis can occur at any location of the vascular system supplied by blood from the heart to large and smallest arterial and venous systems and may affect the function and anatomy of the organ and tissue. It more commonly occurs in the smaller circulatory system of the vascular tree such as arterioles and capillaries, and venules of the organs, especially in the brain, lungs, heart, pancreas, muscle and kidneys, and sinusoids of the liver. Thrombosis has been referred as the disease of "blood clots", which concept is incompletely defined, but represents many different hemostatic diseases from microthrombosis to fibrin clot disease, macrothrombosis, and combined micro-macrothrombosis. Thrombosis is produced following an intravascular injury via one or more combination of four different mechanisms of thrombogenesis: microthrombogenesis, fibrinogenesis, macrothrombogenesis and micro-macrothrombogenesis initiated by normal physiological hemostasis in vivo. The clinical phenotype expression of thrombosis is determined by: (1) depth of the intravascular wall injury, (2) extent of the injury affecting the vascular tree system, (3) physiological character of the involved vascular system, (4) locality of the vascular injury, and (5) underlying non-hemostatic conditions interacting with hemostasis. Recent acquisition of "two-path unifying theory" of hemostasis and "two-activation theory of the endothelium" has opened a new frontier in science of medicine by identifying the pathophysiological mechanism of different thrombotic disorders and also contributing to the better understanding of many poorly defined human diseases, including different phenotypes of stroke and cardiovascular disease, trauma, sepsis and septic shock, multiorgan dysfunction syndrome, and autoimmune disease, and others. Reviewed are the fundamentals in hemostasis, thrombogenesis and thrombosis based on hemostatic theories, and proposed is a novel classification of thrombotic disorders.

10.
Clin Appl Thromb Hemost ; 26: 1076029620913634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584600

RESUMO

Stroke is a hemostatic disease associated with thrombosis/hemorrhage caused by intracranial vascular injury with spectrum of clinical phenotypes and variable prognostic outcomes. The genesis of different phenotypes of stroke is poorly understood due to our incomplete understanding of hemostasis and thrombosis. These shortcomings have handicapped properly recognizing each specific stroke syndrome and contributed to controversy in selecting therapeutic agents. Treatment recommendation for stroke syndromes has been exclusively derived from the result of laborious and expensive clinical trials. According to newly proposed "two-path unifying theory" of in vivo hemostasis, intracranial vascular injury would yield several unique stroke syndromes triggered by 3 distinctly different thrombogenetic mechanisms depending upon level of intracranial intravascular injury and character of formed blood clots. Five major phenotypes of stroke occur via thrombogenetic paths: (1) transient ischemic attack due to focal endothelial damage limited to endothelial cells (ECs), (2) acute ischemic stroke due to localized ECs and subendothelial tissue (SET) damage extending up to the outer vascular wall, (3) thrombo-hemorrhagic stroke due to localized vascular damage involving ECs and SET and extending beyond SET to extravascular tissue, (4) acute hemorrhagic stroke due to major localized intracranial hemorrhage/hematoma into the brain tissue or space between the coverings of the brain associated with vascular anomaly or obtuse trauma, and (5) encephalopathic stroke due to disseminated endotheliopathy leading to microthrombosis within the brain. New classification of stroke phenotypes would assist in selecting rational therapeutic regimen for each stroke syndrome and designing clinical trials to improve clinical outcome.


Assuntos
Acidente Vascular Cerebral/classificação , Tromboplastina/metabolismo , Fator de von Willebrand/metabolismo , Feminino , Hemostasia , Humanos , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA