Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
J Cell Sci ; 137(4)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38264939

RESUMO

Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.


Assuntos
Actinas , Aprendizado Profundo , Animais , Actinas/metabolismo , Pseudópodes/metabolismo , Mamíferos/metabolismo
2.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277158

RESUMO

The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitylation regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitylation impacts VASP activity was unknown. Here, we show that mimicking multi-monoubiquitylation of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitylated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitylated VASP maintained the ability to bind and protect barbed ends from capping protein. Finally, we demonstrate the electroporation of recombinant multi-monoubiquitylated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitylation controls VASP-mediated actin dynamics.


Assuntos
Actinas , Proteínas dos Microfilamentos , Fosfoproteínas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Fosfoproteínas/metabolismo
3.
Dev Biol ; 505: 110-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956923

RESUMO

The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.


Assuntos
Drosophila melanogaster , Pseudópodes , Animais , Pseudópodes/metabolismo , Drosophila melanogaster/metabolismo , Miosinas , Drosophila/metabolismo , Transdução de Sinais
4.
Dev Biol ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39481626

RESUMO

The trophectoderm (TE) epithelium forms the outer layer of the mammalian blastocyst and generates the blastocoel through vectorial transport. Its differentiation during cleavage, studied mainly in mouse, is integrated with blastocyst morphogenesis with key roles for cell polarisation, asymmetric cell divisions, cell signalling, regulatory transcription factors and cellular inheritance. The TE provides a physical and cellular protection to the emerging lineages of the embryo essential for the integrity of blastocyst development. Here, two examples of TE differentiation are considered in some detail where this immediate protective function for embryo survival is assessed: (i) cellular processes from TE at the polar-mural junctional zone in the early blastocyst that later form filopodia traversing the blastocoel, and (ii) the endocytic system which matures and polarises during differentiation. Understanding the broad role for TE in regulating early morphogenesis and environmental protection of the embryo, including these two examples, have clinical as well as biological relevance.

5.
Dev Biol ; 516: 96-113, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39089472

RESUMO

The ellipsoid body (EB) of the insect brain performs pivotal functions in controlling navigation. Input and output of the EB is provided by multiple classes of R-neurons (now referred to as ER-neurons) and columnar neurons which interact with each other in a stereotypical and spatially highly ordered manner. The developmental mechanisms that control the connectivity and topography of EB neurons are largely unknown. One indispensable prerequisite to unravel these mechanisms is to document in detail the sequence of events that shape EB neurons during their development. In this study, we analyzed the development of the Drosophila EB. In addition to globally following the ER-neuron and columnar neuron (sub)classes in the spatial context of their changing environment we performed a single cell analysis using the multi-color flip out (MCFO) system to analyze the developmental trajectory of ER-neurons at different pupal stages, young adults (4d) and aged adults (∼60d). We show that the EB develops as a merger of two distinct elements, a posterior and anterior EB primordium (prEBp and prEBa, respectively. ER-neurons belonging to different subclasses form growth cones and filopodia that associate with the prEBp and prEBa in a pattern that, from early pupal stages onward, foreshadows their mature structure. Filopodia of all ER-subclasses are initially much longer than the dendritic and terminal axonal branches they give rise to, and are pruned back during late pupal stages. Interestingly, extraneous branches, particularly significant in the dendritic domain, are a hallmark of ER-neuron structure in aged brains. Aging is also associated with a decline in synaptic connectivity from columnar neurons, as well as upregulation of presynaptic protein (Brp) in ER-neurons. Our findings advance the EB (and ER-neurons) as a favorable system to visualize and quantify the development and age-related decline of a complex neuronal circuitry.


Assuntos
Envelhecimento , Neurônios , Animais , Neurônios/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Encéfalo/metabolismo , Encéfalo/embriologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Pseudópodes/metabolismo , Pupa/metabolismo , Pupa/crescimento & desenvolvimento , Drosophila/metabolismo , Cones de Crescimento/metabolismo
6.
J Biol Chem ; 300(1): 105523, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043799

RESUMO

Filopodia are slender cellular protrusions containing parallel actin bundles involved in environmental sensing and signaling, cell adhesion and migration, and growth cone guidance and extension. Myosin 10 (Myo10), an unconventional actin-based motor protein, was reported to induce filopodial initiation with its motor domain. However, the roles of the multifunctional tail domain of Myo10 in filopodial formation and elongation remain elusive. Herein, we generated several constructs of Myo10-full-length Myo10, Myo10 with a truncated tail (Myo10 HMM), and Myo10 containing four mutations to disrupt its coiled-coil domain (Myo10 CC mutant). We found that the truncation of the tail domain decreased filopodial formation and filopodial length, while four mutations in the coiled-coil domain disrupted the motion of Myo10 toward filopodial tips and the elongation of filopodia. Furthermore, we found that filopodia elongated through multiple elongation cycles, which was supported by the Myo10 tail. These findings suggest that Myo10 tail is crucial for promoting long filopodia.


Assuntos
Miosinas , Pseudópodes , Actinas/metabolismo , Adesão Celular , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Domínios Proteicos , Pseudópodes/genética , Pseudópodes/metabolismo , Células COS , Animais , Chlorocebus aethiops , Humanos
7.
J Biol Chem ; 300(1): 105516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042485

RESUMO

Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.


Assuntos
Actinas , Perda Auditiva , Miosina Tipo III , Animais , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Chlorocebus aethiops , Células COS , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Miosinas/genética , Miosinas/metabolismo , Estereocílios , Humanos
8.
EMBO J ; 40(10): e105806, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33755220

RESUMO

PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENß. Here, we report the identification of PTENε (also named as PTEN5), a novel N-terminal-extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5'UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Pseudópodes/metabolismo , Animais , Western Blotting , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , PTEN Fosfo-Hidrolase/genética , Reação em Cadeia da Polimerase em Tempo Real
9.
J Cell Sci ; 136(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37987375

RESUMO

Actin-based protrusions are at the base of many fundamental cellular processes, such as cell adhesion, migration and intercellular communication. In recent decades, the discovery of new types of actin-based protrusions with unique functions has enriched our comprehension of cellular processes. However, as the repertoire of protrusions continues to expand, the rationale behind the classification of newly identified and previously known structures becomes unclear. Although current nomenclature allows good categorization of protrusions based on their functions, it struggles to distinguish them when it comes to structure, composition or formation mechanisms. In this Cell Science at a Glance article, we discuss the different types of actin-based protrusions, focusing on filopodia, cytonemes and tunneling nanotubes, to help better distinguish and categorize them based on their structural and functional differences and similarities.


Assuntos
Actinas , Nanotubos , Actinas/metabolismo , Nanotubos/química , Pseudópodes/metabolismo , Comunicação Celular
10.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861887

RESUMO

Myosin-X (MYO10), a molecular motor localizing to filopodia, is thought to transport various cargo to filopodia tips, modulating filopodia function. However, only a few MYO10 cargoes have been described. Here, using GFP-Trap and BioID approaches combined with mass spectrometry, we identified lamellipodin (RAPH1) as a novel MYO10 cargo. We report that the FERM domain of MYO10 is required for RAPH1 localization and accumulation at filopodia tips. Previous studies have mapped the RAPH1 interaction domain for adhesome components to its talin-binding and Ras-association domains. Surprisingly, we find that the RAPH1 MYO10-binding site is not within these domains. Instead, it comprises a conserved helix located just after the RAPH1 pleckstrin homology domain with previously unknown functions. Functionally, RAPH1 supports MYO10 filopodia formation and stability but is not required to activate integrins at filopodia tips. Taken together, our data indicate a feed-forward mechanism whereby MYO10 filopodia are positively regulated by MYO10-mediated transport of RAPH1 to the filopodium tip.


Assuntos
Integrinas , Pseudópodes , Sítios de Ligação , Espectrometria de Massas , Miosinas/genética
11.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
12.
Biol Cell ; 116(11): e2400054, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39233537

RESUMO

BACKGROUND INFORMATION: Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS: We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE: We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.


Assuntos
Microvilosidades , Microvilosidades/ultraestrutura , Microvilosidades/genética , Animais , Humanos , Evolução Biológica , Filogenia , Evolução Molecular
13.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705228

RESUMO

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Movimento Celular , Neoplasias Colorretais , Citoesqueleto , Pseudópodes , Fatores de Transcrição SOXC , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Movimento Celular/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Citoesqueleto/metabolismo , Pseudópodes/metabolismo , Células CACO-2 , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células HCT116 , Citoesqueleto de Actina/metabolismo
14.
Bioessays ; 45(5): e2200249, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916774

RESUMO

Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections results in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.


Assuntos
Doenças Musculares , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Nicho de Células-Tronco , Transdução de Sinais , Células-Tronco , Doenças Musculares/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Diferenciação Celular
15.
J Biol Chem ; 299(10): 105248, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703992

RESUMO

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.

16.
J Neurochem ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352694

RESUMO

The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.

17.
EMBO J ; 39(21): e106003, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32946121

RESUMO

Polarised targeting of diverse mRNAs to cellular protrusions is a hallmark of cell migration. Although a widespread phenomenon, definitive functions for endogenous targeted mRNAs and their relevance to modulation of in vivo tissue dynamics remain elusive. Here, using single-molecule analysis, gene editing and zebrafish live-cell imaging, we report that mRNA polarisation acts as a molecular compass that orients motile cell polarity and spatially directs tissue movement. Clustering of protrusion-derived RNAseq datasets defined a core 192-nt localisation element underpinning precise mRNA targeting to sites of filopodia formation. Such targeting of the small GTPase RAB13 generated tight spatial coupling of mRNA localisation, translation and protein activity, achieving precise subcellular compartmentalisation of RAB13 protein function to create a polarised domain of filopodia extension. Consequently, genomic excision of this localisation element and perturbation of RAB13 mRNA targeting-but not translation-depolarised filopodia dynamics in motile endothelial cells and induced mispatterning of blood vessels in zebrafish. Hence, mRNA polarisation, not expression, is the primary determinant of the site of RAB13 action, preventing ectopic functionality at inappropriate subcellular loci and orienting tissue morphogenesis.


Assuntos
Morfogênese/genética , Morfogênese/fisiologia , RNA Mensageiro/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Polaridade Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases , Edição de Genes , Pseudópodes/metabolismo , Pseudópodes/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
18.
Biol Chem ; 405(1): 31-41, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-37950644

RESUMO

Growth cones of oligodendrocyte progenitor cells (OPCs) are challenging to investigate with conventional light microscopy due to their small size. Especially substructures such as filopodia, lamellipodia and their underlying cytoskeleton are difficult to resolve with diffraction limited microscopy. Light microscopy techniques, which surpass the diffraction limit such as stimulated emission depletion microscopy, often require expensive setups and specially trained personnel rendering them inaccessible to smaller research groups. Lately, the invention of expansion microscopy (ExM) has enabled super-resolution imaging with any light microscope without the need for additional equipment. Apart from the necessary resolution, investigating OPC growth cones comes with another challenge: Imaging the topography of membranes, especially label- and contact-free, is only possible with very few microscopy techniques one of them being scanning ion conductance microscopy (SICM). We here present a new imaging workflow combining SICM and ExM, which enables the visualization of OPC growth cone nanostructures. We correlated SICM recordings and ExM images of OPC growth cones captured with a conventional widefield microscope. This enabled the visualization of the growth cones' membrane topography as well as their underlying actin and tubulin cytoskeleton.


Assuntos
Microscopia , Células Precursoras de Oligodendrócitos , Microscopia/métodos , Cones de Crescimento , Citoesqueleto , Microtúbulos
19.
Genes Cells ; 28(10): 709-726, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615261

RESUMO

Drosophila mxcmbn1 mutant exhibits severe hyperplasia in larval hematopoietic tissue called the lymph glands (LGs). However, the malignant nature of these cells remains unknown. We aimed to identify if mxcmbn1 LG cells behave as malignant tumor cells and uncover the mechanism(s) underlying the malignancy of the mutant hemocytes. When mutant LG cells were allografted into normal adult abdomens, they continued to proliferate; however, normal LG cells did not proliferate. Mutant circulating hemocytes also attached to the larval central nervous system (CNS), where the basement membrane was disrupted. The mutant hemocytes displayed higher expression of matrix metalloproteinase (MMP) 1 and MMP2 and higher activation of the c-Jun N-terminal kinase (JNK) pathway than normal hemocytes. Depletion of MMPs or JNK mRNAs in LGs resulted in reduced numbers of hemocytes attached to the CNS, suggesting that the invasive phenotype involved elevated expression of MMPs via hyperactivation of the JNK pathway. Moreover, hemocytes with elongated filopodia and extra lamellipodia were frequently observed in the mutant hemolymph, which also depended on JNK signaling. Thus, the MMP upregulation and overextension of actin-based cell protrusions were also involved in hemocyte invasion in mxcmbn1 larvae. These findings contribute to the understanding of molecular mechanisms underlying mammalian leukemic invasion.

20.
Acta Pharmacol Sin ; 45(1): 193-208, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749237

RESUMO

Metastasis of colorectal cancer (CRC) is a leading cause of mortality among CRC patients. Elevated COX-2 and PD-L1 expression in colon cancer tissue has been linked to distant metastasis of tumor cells. Although COX-2 inhibitors and immune checkpoint inhibitors demonstrate improved anti-tumor efficacy, their toxicity and variable therapeutic effects in individual patients raise concerns. To address this challenge, it is vital to identify traditional Chinese medicine components that modulate COX-2 and PD-1/PD-L1: rosmarinic acid (RA) exerts striking inhibitory effect on COX-2, while ginsenoside Rg1 (GR) possesses the potential to suppress the binding of PD-1/PD-L1. In this study we investigated whether the combination of RA and GR could exert anti-metastatic effects against CRC. MC38 tumor xenograft mouse model with lung metastasis was established. The mice were administered RA (100 mg·kg-1·d-1, i.g.) alone or in combination with GR (100 mg·kg-1·d-1, i.p.). We showed that RA (50, 100, 150 µM) or a COX-2 inhibitor Celecoxib (1, 3, 9 µM) concentration-dependently inhibited the migration and invasion of MC38 cells in vitro. We further demonstrated that RA and Celecoxib inhibited the metastasis of MC38 tumors in vitro and in vivo via interfering with the COX-2-MYO10 signaling axis and inhibiting the generation of filopodia. In the MC38 tumor xenograft mice, RA administration significantly decreased the number of metastatic foci in the lungs detected by Micro CT scanning; RA in combination with GR that had inhibitory effect on the binding of PD-1 and PD-L1 further suppressed the lung metastasis of colon cancer. Compared to COX-2 inhibitors and immune checkpoint inhibitors, RA and GR displayed better safety profiles without disrupting the tissue structures of the liver, stomach and colon, offering insights into the lower toxic effects of clinical traditional Chinese medicine against tumors while retaining its efficacy.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácido Rosmarínico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA