Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 39, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642242

RESUMO

BACKGROUND: Differential gene expression can be translated into differing phenotypic traits. Especially during embryogenesis, specific gene expression networks regulate the development of different body structures. Cichlid fishes, with their impressive phenotypic diversity and propensity to radiate, are an emerging model system in the genomics era. Here we set out to investigate gene expression throughout development in the well-studied cichlid fish Astatotilapia burtoni, native to Lake Tanganyika and its affluent rivers. RESULTS: Combining RNA-sequencing from different developmental time points as well as integrating adult gene expression data, we constructed a new genome annotation for A. burtoni comprising 103,253 transcripts (stemming from 52,584 genomic loci) as well as a new reference transcriptome set. We compared our transcriptome to the available reference genome, redefining transcripts and adding new annotations. We show that about half of these transcripts have coding potential. We also characterize transcripts that are not present in the genome assembly. Next, using our newly constructed comprehensive reference transcriptome, we characterized differential gene expression through time and showed that gene expression is shifted between different body parts. We constructed a gene expression network that identified connected genes responsible for particular phenotypes and made use of it to focus on genes under potential positive selection in A. burtoni, which were implicated in fin development and vision. CONCLUSIONS: We provide new genomic resources for the cichlid fish Astatotilapia burtoni, which will contribute to its further establishment as a model system. Tracing gene expression through time, we identified gene networks underlying particular functions, which will help to understand the genetic basis of phenotypic diversity in cichlids.


Assuntos
Ciclídeos/embriologia , Ciclídeos/genética , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Evolução Molecular , Redes Reguladoras de Genes , Fenótipo , Filogenia , Análise de Sequência de RNA/métodos
2.
Dev Dyn ; 247(5): 712-723, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29396887

RESUMO

BACKGROUND: Studying cartilaginous fishes (chondrichthyans) has helped us understand vertebrate evolution and diversity. However, resources such as genome sequences, embryos, and detailed staging tables are limited for species within this clade. To overcome these limitations, we have focused on a species, the brownbanded bamboo shark (Chiloscyllium punctatum), which is a relatively common aquarium species that lays eggs continuously throughout the year. In addition, because of its relatively small genome size, this species is promising for molecular studies. RESULTS: To enhance biological studies of cartilaginous fishes, we establish a normal staging table for the embryonic development of the brownbanded bamboo shark. Bamboo shark embryos take around 118 days to reach the hatching period at 25°C, which is approximately 1.5 times as fast as the small-spotted catshark (Scyliorhinus canicula) takes. Our staging table divides the embryonic period into 38 stages. Furthermore, we found culture conditions that allow early embryos to grow in partially opened egg cases. CONCLUSIONS: In addition to the embryonic staging table, we show that bamboo shark embryos exhibit relatively fast embryonic growth and are amenable to culture, key characteristics that enhance their experimental utility. Therefore, the present study is a foundation for cartilaginous fish research. Developmental Dynamics 247:712-723, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Desenvolvimento Embrionário/fisiologia , Tubarões/embriologia , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/citologia
3.
Front Cell Dev Biol ; 11: 1170691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691823

RESUMO

Anterior and posterior paired appendages of vertebrates are notable examples of heterochrony in the relative timing of their development. In teleosts, posterior paired appendages (pelvic fin buds) emerge much later than their anterior paired appendages (pectoral fin buds). Pelvic fin buds of zebrafish (Danio rerio) appear at 3 weeks post-fertilization (wpf) during the larva-to-juvenile transition (metamorphosis), whereas pectoral fin buds arise from the lateral plate mesoderm on the yolk surface at the embryonic stage. Here we explored the mechanism by which presumptive pelvic fin cells maintain their fate, which is determined at the embryonic stage, until the onset of metamorphosis. Expression analysis revealed that transcripts of pitx1, one of the key factors for the development of posterior paired appendages, became briefly detectable in the posterior lateral plate mesoderm at early embryonic stages. Further analysis indicated that the pelvic fin-specific pitx1 enhancer was in the poised state at the larval stage and is activated at the juvenile stage. We discuss the implications of these findings for the heterochronic development of pelvic fin buds.

4.
Toxicol Rep ; 9: 373-381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284238

RESUMO

Dysregulation of microRNA (miRNA, miR) by environmental stressors influences the transcription of mRNA which may impair organism development and/or lead to adverse physiological outcomes. Early studies evaluating the effects of oil on developmental toxicity in early life stages of fish showed that reductions in expression of miR-203a were associated with enhanced expression of downstream mRNAs that predicted altered eye development, cardiovascular disease, and improper fin development. To better understand the effects of miR-203a inhibition as an outcome of oil-induced toxicity in early life stage (ELS) fish, embryonic zebrafish were injected with an miR-203a inhibitor or treated with 3.5 µM phenanthrene (Phe) as a positive control for morphological alterations of cardiovascular and eye development caused by oil. Embryos treated with Phe had diminished levels of miR-203a at 7 and 72 h after injection. Embryos treated with the miR-203a inhibitor and Phe exhibited a reduced heart rate by 48 h post fertilization (hpf), with an increased incidence of developmental deformities (including pericardial edema, altered eye development, and spinal deformities) and reduced caudal fin length by 72 hpf. There were significant reductions in lens and eye diameters in 120 hpf miR-203a-inhibitor and Phe-treated fish, as well as a significantly reduced number of eye saccades, determined by an optokinetic response (OKR) behavioral assay. The expression of vegfa, which is an important activator during neovascularization, was significantly upregulated in embryos receiving miR-203a inhibitor injections by 7 and 72 hpf with increased trends in vegfa expression in 72 hpf larvae treated with Phe. There were decreasing trends in crx, neurod1, and pde6h expression by 72 hpf in miR-203a inhibitor and Phe treatments, which are involved in photoreceptor function in developing eyes and regulated by miR-203a. These results suggest that an inhibition of miR-203a in ELS fish exhibits an oil-induced toxic response that is consistent with Phe treatment and specifically impacts retinal, cardiac, and fin development in ELS fish.

5.
Heliyon ; 8(9): e10406, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36119882

RESUMO

Among the different metal oxide nanoparticles, zinc oxide nanoparticles have gained significant importance due to their antibacterial properties against clinically pathogenic bacteria during the organal development. In the present study, biogenic zinc oxide nanoparticles were synthesized using seed extract of Citrus limon by a simple, cost-effective, and green chemistry approach. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Dynamic Light Scattering, and Scanning Electron Microscopy. Next, the antimicrobial activity of ZnO NPs was tested against clinically pathogenic bacteria, i.e., Pseudomonas fluorescens, Escherichia coli, Enterobacter aerogenes, and Bacillus subtilis. Followed by, ZnO NPs were evaluated for the development of caudal fin in Zebrafish. The UV-Vis spectram result showed a band at 380 nm and FTIR results confirmed the ZnO NPs. The average crystallite size of the ZnO NPs was 52.65 ± 0.5 nm by the Debye Scherrer equation and SEM showed spherical-shaped particles. A zone of inhibition around ZnO NPs applied to P. fluorescens indicates sensitive to ZnO NPs followed by B. subtilis. Among the four different bacterial pathogens, E. aerogenes was the most susceptible compared to the other three pathogens. The calculated sub-lethal concentration of ZnO NPs at 96 h was 153.8 mg/L with a 95% confidence limit ranging from 70.62 to 214.18 mg/L, which was used with partially amputated zebrafish caudal fin growth. A significant (p < 0.5) development (95%) in the amputated caudal fin was detected at 12 days post-amputation. Low concentrated ZnO NPs can reduce developmental malformation. Collectively, suggested results strongly proved that lemon seed-mediated synthesized ZnO NPs had a good pathogenic barrier for bacterial infection during the external organal development for the first time.

6.
Elife ; 102021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560225

RESUMO

How genetic changes are linked to morphological novelties and developmental constraints remains elusive. Here, we investigate genetic apparatuses that distinguish fish fins from tetrapod limbs by analyzing transcriptomes and open-chromatin regions (OCRs). Specifically, we compared mouse forelimb buds with the pectoral fin buds of an elasmobranch, the brown-banded bamboo shark (Chiloscyllium punctatum). A transcriptomic comparison with an accurate orthology map revealed both a mass heterochrony and hourglass-shaped conservation of gene expression between fins and limbs. Furthermore, open-chromatin analysis suggested that access to conserved regulatory sequences is transiently increased during mid-stage limb development. During this stage, stage-specific and tissue-specific OCRs were also enriched. Together, early and late stages of fin/limb development are more permissive to mutations than middle stages, which may have contributed to major morphological changes during the fin-to-limb evolution. We hypothesize that the middle stages are constrained by regulatory complexity that results from dynamic and tissue-specific transcriptional controls.


Animals come in all shapes and sizes. This diversity arose through genetic mutations during evolution, but it is unclear exactly how these variations led to the formation of new shapes. There is increasing evidence to suggest that not all shapes are possible and that variability between animals is limited by a phenomenon known as "developmental constraint". These limitations direct parts of the body towards a specific shape as they develop in the embryo. Therefore, understanding the mechanisms underlying these developmental constraints could help explain how different body shapes evolved. The limbs of humans and other mammals evolved from the fins of fish, and this transition is often used to study the role developmental constraints play in evolution. This is an ideal model as there is already a detailed fossil record mapping this evolutionary event, and data pinpointing some of the genes involved in the development of limbs and fins. But this data is incomplete, and a full comparison between the genes activated in the fin and the limb during embryonic development had not been achieved. This is because most fish used for research have undergone recent genetic changes, making it hard to spot which genetic differences are linked to the evolution of the limb. To overcome this barrier, Onimaru et al. compared genetic data from the developing limbs of mice to the developing fins of the brown-banded bamboo shark, which evolves much slower than other fish. This revealed that although many genes commonly played a role in the development of the fin and the limb in the embryo, the activity of these shared genes was not the same. For example, genes that switched on in the late stages of limb development, switched off in the late stages of fin development. But in the middle of development, those differences were relatively small and both species activated very similar sets of genes. Many of these genes were pleiotropic, which means they have important roles in other tissues and therefore mutate less often. This suggests that the mid-stage of limb development is under the strongest level of constraint. Darwin's theory of natural selection explains that mutations drive evolution. But the theory cannot predict what kinds of new body shapes new mutations will produce. Understanding how the activity levels of different genes affect development could help to fill this knowledge gap. This has potential medical applications, for example, understanding why some genetic changes cause more serious problems than others. This work suggests that mutations in genes that are active during the mid-stage of limb development may have the most serious impact.


Assuntos
Nadadeiras de Animais/embriologia , Evolução Biológica , Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Botões de Extremidades/embriologia , Tubarões/embriologia , Animais , Extremidades/embriologia , Camundongos , Filogenia
7.
Curr Biol ; 31(5): 911-922.e4, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33275891

RESUMO

Sexual selection results in sex-specific characters like the conspicuously pigmented extension of the ventral tip of the caudal fin-the "sword"-in males of several species of Xiphophorus fishes. To uncover the genetic architecture underlying sword formation and to identify genes that are associated with its development, we characterized the sword transcriptional profile and combined it with genetic mapping approaches. Results showed that the male ornament of swordtails develops from a sexually non-dimorphic prepattern of transcription factors in the caudal fin. Among genes that constitute the exclusive sword transcriptome and are located in the genomic region associated with this trait we identify the potassium channel, Kcnh8, as a sword development gene. In addition to its neural function kcnh8 performs a known role in fin growth. These findings indicate that during evolution of swordtails a brain gene has been co-opted for an additional novel function in establishing a male ornament.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Ciprinodontiformes/anatomia & histologia , Ciprinodontiformes/genética , Preferência de Acasalamento Animal , Caracteres Sexuais , Nadadeiras de Animais/embriologia , Animais , Ciprinodontiformes/embriologia , Feminino , Masculino , Fenótipo , Fatores de Transcrição/metabolismo , Transcriptoma
8.
Gene Expr Patterns ; 25-26: 22-28, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28442438

RESUMO

The development of the median fin has not been investigated extensively in teleosts, although in other fishes it has been proposed that it involves the same genetic programs operating in the paired appendages. Adult median fins develop from the larval bud; therefore an investigation of fin bud formation and its cellular origin is essential to understanding the maturation mechanisms. In Paralichthys olivaceus, skeletogenesis proceeds from an anterior to posterior direction providing a good opportunity to study the formation of dorsal fin bud. An apical ectodermal ridge appeared at the basal stratum of the presumptive dorsal fin was first observed at 3 days post hatching. Then the apical ectodermal fold formed as the bud outgrew in 6 days post-hatch larvae. The bud continued to grow, breaking through the dorsal fin fold in 9 days post-hatch larvae. At 13 days post-hatch, the bud grew beyond the edge of the fin fold and formed into the four future rays. Molecular markers of cell type showed the existence of neural crest cells, scleroblasts and sclerotomes in the dorsal fin bud. The earliest gene expression in the dorsal fin bud was Hoxd10 at 3 days post-hatch larvae, then Hoxd9, Hoxd11 and Hoxd12. This indicates Hoxd10 might be a candidate molecular marker of the bud formation site. Some key molecular markers for paired appendage development, such as FGF8, Wnt7, and Shh were expressed at the apical ectodermal ridge and later the apical ectodermal fold. Moreover, the form of the dorsal fin bud could be inhibited by Hh pathway inhibitor, further indicating that common basic molecular mechanisms might be utilized by median fins.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Linguado/crescimento & desenvolvimento , Crista Neural/citologia , Nadadeiras de Animais/citologia , Animais , Padronização Corporal , Linguado/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Proteínas de Homeodomínio/genética , Transdução de Sinais
9.
Reprod Toxicol ; 63: 161-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288890

RESUMO

Gambogic acid (GA), the major active ingredient of gamboge, has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients due to its strong anticancer activity. However, our previous research showed that GA was teratogenic against zebrafish fin development. To explore the teratogenicity and the underlying mechanisms, zebrafish (Danio rerio) embryos were used. The morphological observations revealed that GA caused fin defects in zebrafish embryos in a concentration-dependent manner. The critical exposure time of GA to reveal teratogenicity was before 8 hpf (hours post fertilization). LC/MS/MS analysis revealed that a maximum bioconcentration of GA was occurred at 4 hpf. Q-PCR data showed that GA treatment resulted in significant inactivation of RA signaling which could be partially rescued by the exogenous supply of RA. These results indicate the potential teratogenicity of GA and provide evidence for a caution in its future clinic use.


Assuntos
Nadadeiras de Animais/efeitos dos fármacos , Antineoplásicos/toxicidade , Tretinoína/metabolismo , Xantonas/toxicidade , Nadadeiras de Animais/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Retinal Desidrogenase/genética , Ácido Retinoico 4 Hidroxilase/genética , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA