Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400262

RESUMO

Intelligent workshop UAV inspection path planning is a typical indoor UAV path planning technology. The UAV can conduct intelligent inspection on each work area of the workshop to solve or provide timely feedback on problems in the work area. The sparrow search algorithm (SSA), as a novel swarm intelligence optimization algorithm, has been proven to have good optimization performance. However, the reduction in the SSA's search capability in the middle or late stage of iterations reduces population diversity, leading to shortcomings of the algorithm, including low convergence speed, low solution accuracy and an increased risk of falling into local optima. To overcome these difficulties, an improved sparrow search algorithm (namely the chaotic mapping-firefly sparrow search algorithm (CFSSA)) is proposed by integrating chaotic cube mapping initialization, firefly algorithm disturbance search and tent chaos mapping perturbation search. First, chaotic cube mapping was used to initialize the population to improve the distribution quality and diversity of the population. Then, after the sparrow search, the firefly algorithm disturbance and tent chaos mapping perturbation were employed to update the positions of all individuals in the population to enable a full search of the algorithm in the solution space. This technique can effectively avoid falling into local optima and improve the convergence speed and solution accuracy. The simulation results showed that, compared with the traditional intelligent bionic algorithms, the optimized algorithm provided a greatly improved convergence capability. The feasibility of the proposed algorithm was validated with a final simulation test. Compared with other SSA optimization algorithms, the results show that the CFSSA has the best efficiency. In an inspection path planning problem, the CFSSA has its advantages and applicability and is an applicable algorithm compared to SSA optimization algorithms.

2.
Entropy (Basel) ; 25(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37509968

RESUMO

This paper reviews the potential use of fuzzy c-means clustering (FCM) and explores modifications to the distance function and centroid initialization methods to enhance image segmentation. The application of interest in the paper is the segmentation of breast tumours in mammograms. Breast cancer is the second leading cause of cancer deaths in Canadian women. Early detection reduces treatment costs and offers a favourable prognosis for patients. Classical methods, like mammograms, rely on radiologists to detect cancerous tumours, which introduces the potential for human error in cancer detection. Classical methods are labour-intensive, and, hence, expensive in terms of healthcare resources. Recent research supplements classical methods with automated mammogram analysis. The basic FCM method relies upon the Euclidean distance, which is not optimal for measuring non-spherical structures. To address these limitations, we review the implementation of a Mahalanobis-distance-based FCM (FCM-M). The three objectives of the paper are: (1) review FCM, FCM-M, and three centroid initialization algorithms in the literature, (2) illustrate the effectiveness of these algorithms in image segmentation, and (3) develop a Python package with the optimized algorithms to upload onto GitHub. Image analysis of the algorithms shows that using one of the three centroid initialization algorithms enhances the performance of FCM. FCM-M produced higher clustering accuracy and outlined the tumour structure better than basic FCM.

3.
Microprocess Microsyst ; 98: 104778, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36785847

RESUMO

Feature selection is one of the most important challenges in machine learning and data science. This process is usually performed in the data preprocessing phase, where the data is transformed to a proper format for further operations by machine learning algorithm. Many real-world datasets are highly dimensional with many irrelevant, even redundant features. These kinds of features do not improve classification accuracy and can even shrink down performance of a classifier. The goal of feature selection is to find optimal (or sub-optimal) subset of features that contain relevant information about the dataset from which machine learning algorithms can derive useful conclusions. In this manuscript, a novel version of firefly algorithm (FA) is proposed and adapted for feature selection challenge. Proposed method significantly improves performance of the basic FA, and also outperforms other state-of-the-art metaheuristics for both, benchmark bound-constrained and practical feature selection tasks. Method was first validated on standard unconstrained benchmarks and later it was applied for feature selection by using 21 standard University of California, Irvine (UCL) datasets. Moreover, presented approach was also tested for relatively novel COVID-19 dataset for predicting patients health, and one microcontroller microarray dataset. Results obtained in all practical simulations attest robustness and efficiency of proposed algorithm in terms of convergence, solutions' quality and classification accuracy. More precisely, the proposed approach obtained the best classification accuracy on 13 out of 21 total datasets, significantly outperforming other competitor methods.

4.
Sensors (Basel) ; 22(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35161596

RESUMO

The Internet of Things (IoT) is defined as interconnected digital and mechanical devices with intelligent and interactive data transmission features over a defined network. The ability of the IoT to collect, analyze and mine data into information and knowledge motivates the integration of IoT with grid and cloud computing. New job scheduling techniques are crucial for the effective integration and management of IoT with grid computing as they provide optimal computational solutions. The computational grid is a modern technology that enables distributed computing to take advantage of a organization's resources in order to handle complex computational problems. However, the scheduling process is considered an NP-hard problem due to the heterogeneity of resources and management systems in the IoT grid. This paper proposed a Greedy Firefly Algorithm (GFA) for jobs scheduling in the grid environment. In the proposed greedy firefly algorithm, a greedy method is utilized as a local search mechanism to enhance the rate of convergence and efficiency of schedules produced by the standard firefly algorithm. Several experiments were conducted using the GridSim toolkit to evaluate the proposed greedy firefly algorithm's performance. The study measured several sizes of real grid computing workload traces, starting with lightweight traces with only 500 jobs, then typical with 3000 to 7000 jobs, and finally heavy load containing 8000 to 10,000 jobs. The experiment results revealed that the greedy firefly algorithm could insignificantly reduce the makespan makespan and execution times of the IoT grid scheduling process as compared to other evaluated scheduling methods. Furthermore, the proposed greedy firefly algorithm converges on large search spacefaster , making it suitable for large-scale IoT grid environments.

5.
J Xray Sci Technol ; 30(2): 231-244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34924434

RESUMO

Since the infectious disease occurrence rate in the human community is gradually rising due to varied reasons, appropriate diagnosis and treatments are essential to control its spread. The recently discovered COVID-19 is one of the contagious diseases, which infected numerous people globally. This contagious disease is arrested by several diagnoses and handling actions. Medical image-supported diagnosis of COVID-19 infection is an approved clinical practice. This research aims to develop a new Deep Learning Method (DLM) to detect the COVID-19 infection using the chest X-ray. The proposed work implemented two methods namely, detection of COVID-19 infection using (i) a Firefly Algorithm (FA) optimized deep-features and (ii) the combined deep and machine features optimized with FA. In this work, a 5-fold cross-validation method is engaged to train and test detection methods. The performance of this system is analyzed individually resulting in the confirmation that the deep feature-based technique helps to achieve a detection accuracy of > 92% with SVM-RBF classifier and combining deep and machine features achieves > 96% accuracy with Fine KNN classifier. In the future, this technique may have potential to play a vital role in testing and validating the X-ray images collected from patients suffering from the infection diseases.


Assuntos
COVID-19 , Algoritmos , COVID-19/diagnóstico por imagem , Humanos , Radiografia , SARS-CoV-2
6.
Entropy (Basel) ; 24(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455188

RESUMO

Only the smell perception rule is considered in the butterfly optimization algorithm (BOA), which is prone to falling into a local optimum. Compared with the original BOA, an extra operator, i.e., color perception rule, is incorporated into the proposed hybrid-flash butterfly optimization algorithm (HFBOA), which makes it more in line with the actual foraging characteristics of butterflies in nature. Besides, updating the strategy of the control parameters by the logistic mapping is used in the HFBOA for enhancing the global optimal ability. The performance of the proposed method was verified by twelve benchmark functions, where the comparison experiment results show that the HFBOA converges quicker and has better stability for numerical optimization problems, which are compared with six state-of-the-art optimization methods. Additionally, the proposed HFBOA is successfully applied to six engineering constrained optimization problems (i.e., tubular column design, tension/compression spring design, cantilever beam design, etc.). The simulation results reveal that the proposed approach demonstrates superior performance in solving complex real-world engineering constrained tasks.

7.
BMC Bioinformatics ; 22(Suppl 3): 448, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544363

RESUMO

BACKGROUND: The growing researches of molecular biology reveal that complex life phenomena have the ability to demonstrating various types of interactions in the level of genomics. To establish the interactions between genes or proteins and understand the intrinsic mechanisms of biological systems have become an urgent need and study hotspot. RESULTS: In order to forecast gene expression data and identify more accurate gene regulatory network, complex-valued version of ordinary differential equation (CVODE) is proposed in this paper. In order to optimize CVODE model, a complex-valued hybrid evolutionary method based on Grammar-guided genetic programming and complex-valued firefly algorithm is presented. CONCLUSIONS: When tested on three real gene expression datasets from E. coli and Human Cell, the experiment results suggest that CVODE model could improve 20-50% prediction accuracy of gene expression data, which could also infer more true-positive regulatory relationships and less false-positive regulations than ordinary differential equation.


Assuntos
Escherichia coli , Redes Reguladoras de Genes , Algoritmos , Biologia Computacional , Escherichia coli/genética , Perfilação da Expressão Gênica , Humanos , Saccharomyces cerevisiae/genética
8.
Sensors (Basel) ; 21(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34770595

RESUMO

In healthcare, a multitude of data is collected from medical sensors and devices, such as X-ray machines, magnetic resonance imaging, computed tomography (CT), and so on, that can be analyzed by artificial intelligence methods for early diagnosis of diseases. Recently, the outbreak of the COVID-19 disease caused many deaths. Computer vision researchers support medical doctors by employing deep learning techniques on medical images to diagnose COVID-19 patients. Various methods were proposed for COVID-19 case classification. A new automated technique is proposed using parallel fusion and optimization of deep learning models. The proposed technique starts with a contrast enhancement using a combination of top-hat and Wiener filters. Two pre-trained deep learning models (AlexNet and VGG16) are employed and fine-tuned according to target classes (COVID-19 and healthy). Features are extracted and fused using a parallel fusion approach-parallel positive correlation. Optimal features are selected using the entropy-controlled firefly optimization method. The selected features are classified using machine learning classifiers such as multiclass support vector machine (MC-SVM). Experiments were carried out using the Radiopaedia database and achieved an accuracy of 98%. Moreover, a detailed analysis is conducted and shows the improved performance of the proposed scheme.


Assuntos
COVID-19 , Aprendizado Profundo , Animais , Inteligência Artificial , Entropia , Vaga-Lumes , Humanos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
9.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450706

RESUMO

Firefly Algorithm (FA) is a recent swarm intelligence first introduced by X.S. Yang in 2008. It has been widely used to solve several optimization problems. Since then, many research works were elaborated presenting modified versions intending to improve performances of the standard one. Consequently, this article aims to present an accelerated variant compared to the original Algorithm. Through the resolving of some benchmark functions to reach optimal solution, obtained results demonstrate the superiority of the suggested alternative, so-called Fast Firefly Algorithm (FFA), when faced with those of the standard FA in term of convergence fastness to the global solution according to an almost similar precision. Additionally, a successful application for the control of a brushless direct current electric motor (BLDC) motor by optimization of the Proportional Integral (PI) regulator parameters is given. These parameters are optimized by the FFA, FA, GA, PSO and ABC algorithms using the IAE, ISE, ITAE and ISTE performance criteria.


Assuntos
Algoritmos , Benchmarking , Eletricidade
10.
Sensors (Basel) ; 20(7)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268547

RESUMO

Semantic Sensor Web (SSW) links the semantic web technique with the sensor network, which utilizes sensor ontology to describe sensor information. Annotating sensor data with different sensor ontologies can be of help to implement different sensor systems' inter-operability, which requires that the sensor ontologies themselves are inter-operable. Therefore, it is necessary to match the sensor ontologies by establishing the meaningful links between semantically related sensor information. Since the Swarm Intelligent Algorithm (SIA) represents a good methodology for addressing the ontology matching problem, we investigate a popular SIA, that is, the Firefly Algorithm (FA), to optimize the ontology alignment. To save the memory consumption and better trade off the algorithm's exploitation and exploration, in this work, we propose a general-purpose ontology matching technique based on Compact co-Firefly Algorithm (CcFA), which combines the compact encoding mechanism with the co-Evolutionary mechanism. Our proposal utilizes the Gray code to encode the solutions, two compact operators to respectively implement the exploiting strategy and exploring strategy, and two Probability Vectors (PVs) to represent the swarms that respectively focuses on the exploitation and exploration. Through the communications between two swarms in each generation, CcFA is able to efficiently improve the searching efficiency when addressing the sensor ontology matching problem. The experiment utilizes the Conference track and three pairs of real sensor ontologies to test our proposal's performance. The statistical results show that CcFA based ontology matching technique can effectively match the sensor ontologies and other general ontologies in the domain of organizing conferences.

11.
Entropy (Basel) ; 22(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33286433

RESUMO

Image registration has an imperative role in medical imaging. In this work, a grey-wolf optimizer (GWO)-based non-rigid demons registration is proposed to support the retinal image registration process. A comparative study of the proposed GWO-based demons registration framework with cuckoo search, firefly algorithm, and particle swarm optimization-based demons registration is conducted. In addition, a comparative analysis of different demons registration methods, such as Wang's demons, Tang's demons, and Thirion's demons which are optimized using the proposed GWO is carried out. The results established the superiority of the GWO-based framework which achieved 0.9977 correlation, and fast processing compared to the use of the other optimization algorithms. Moreover, GWO-based Wang's demons performed better accuracy compared to the Tang's demons and Thirion's demons framework. It also achieved the best less registration error of 8.36 × 10-5.

12.
Sensors (Basel) ; 19(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167498

RESUMO

Time difference of arrival (TDoA) based on a group of sensor nodes with known locations has been widely used to locate targets. Two-step weighted least squares (TSWLS), constrained weighted least squares (CWLS), and Newton-Raphson (NR) iteration are commonly used passive location methods, among which the initial position is needed and the complexity is high. This paper proposes a hybrid firefly algorithm (hybrid-FA) method, combining the weighted least squares (WLS) algorithm and FA, which can reduce computation as well as achieve high accuracy. The WLS algorithm is performed first, the result of which is used to restrict the search region for the FA method. Simulations showed that the hybrid-FA method required far fewer iterations than the FA method alone to achieve the same accuracy. Additionally, two experiments were conducted to compare the results of hybrid-FA with other methods. The findings indicated that the root-mean-square error (RMSE) and mean distance error of the hybrid-FA method were lower than that of the NR, TSWLS, and genetic algorithm (GA). On the whole, the hybrid-FA outperformed the NR, TSWLS, and GA for TDoA measurement.

13.
Sensors (Basel) ; 19(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847300

RESUMO

An intrabody nanonetwork (IBNN) is composed of nanoscale (NS) devices, implanted inside the human body for collecting diverse physiological information for diagnostic and treatment purposes. The unique constraints of these NS devices in terms of energy, storage and computational resources are the primary challenges in the effective designing of routing protocols in IBNNs. Our proposed work explicitly considers these limitations and introduces a novel energy-efficient routing scheme based on a fuzzy logic and bio-inspired firefly algorithm. Our proposed fuzzy logic-based correlation region selection and bio-inspired firefly algorithm based nano biosensors (NBSs) nomination jointly contribute to energy conservation by minimizing transmission of correlated spatial data. Our proposed fuzzy logic-based correlation region selection mechanism aims at selecting those correlated regions for data aggregation that are enriched in terms of energy and detected information. While, for the selection of NBSs, we proposed a new bio-inspired firefly algorithm fitness function. The fitness function considers the transmission history and residual energy of NBSs to avoid exhaustion of NBSs in transmitting invaluable information. We conduct extensive simulations using the Nano-SIM tool to validate the in-depth impact of our proposed scheme in saving energy resources, reducing end-to-end delay and improving packet delivery ratio. The detailed comparison of our proposed scheme with different scenarios and flooding scheme confirms the significance of the optimized selection of correlated regions and NBSs in improving network lifetime and packet delivery ratio while reducing the average end-to-end delay.


Assuntos
Tecnologia sem Fio , Algoritmos , Técnicas Biossensoriais , Lógica Fuzzy , Nanotecnologia/métodos
14.
Entropy (Basel) ; 21(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33267208

RESUMO

Global optimization, especially on a large scale, is challenging to solve due to its nonlinearity and multimodality. In this paper, in order to enhance the global searching ability of the firefly algorithm (FA) inspired by bionics, a novel hybrid meta-heuristic algorithm is proposed by embedding the cross-entropy (CE) method into the firefly algorithm. With adaptive smoothing and co-evolution, the proposed method fully absorbs the ergodicity, adaptability and robustness of the cross-entropy method. The new hybrid algorithm achieves an effective balance between exploration and exploitation to avoid falling into a local optimum, enhance its global searching ability, and improve its convergence rate. The results of numeral experiments show that the new hybrid algorithm possesses more powerful global search capacity, higher optimization precision, and stronger robustness.

15.
Sensors (Basel) ; 18(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384451

RESUMO

Flash floods are widely recognized as one of the most devastating natural hazards in the world, therefore prediction of flash flood-prone areas is crucial for public safety and emergency management. This research proposes a new methodology for spatial prediction of flash floods based on Sentinel-1 SAR imagery and a new hybrid machine learning technique. The SAR imagery is used to detect flash flood inundation areas, whereas the new machine learning technique, which is a hybrid of the firefly algorithm (FA), Levenberg⁻Marquardt (LM) backpropagation, and an artificial neural network (named as FA-LM-ANN), was used to construct the prediction model. The Bac Ha Bao Yen (BHBY) area in the northwestern region of Vietnam was used as a case study. Accordingly, a Geographical Information System (GIS) database was constructed using 12 input variables (elevation, slope, aspect, curvature, topographic wetness index, stream power index, toposhade, stream density, rainfall, normalized difference vegetation index, soil type, and lithology) and subsequently the output of flood inundation areas was mapped. Using the database and FA-LM-ANN, the flash flood model was trained and verified. The model performance was validated via various performance metrics including the classification accuracy rate, the area under the curve, precision, and recall. Then, the flash flood model that produced the highest performance was compared with benchmarks, indicating that the combination of FA and LM backpropagation is proven to be very effective and the proposed FA-LM-ANN is a new and useful tool for predicting flash flood susceptibility.

16.
Sensors (Basel) ; 17(11)2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117100

RESUMO

Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.


Assuntos
Algoritmos , Automação , Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador
17.
BMC Bioinformatics ; 17(1): 323, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27565741

RESUMO

BACKGROUND: DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. RESULTS: In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. CONCLUSIONS: A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.


Assuntos
Algoritmos , Proteínas de Ligação a DNA/metabolismo , Área Sob a Curva , Proteínas de Ligação a DNA/química , Bases de Dados de Proteínas , Internet , Estrutura Secundária de Proteína , Curva ROC , Interface Usuário-Computador
18.
J Med Syst ; 40(11): 240, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27679449

RESUMO

The difficulty of disambiguating the sense of the incomplete and imprecise keywords that are extensively used in the search queries has caused the failure of search systems to retrieve the desired information. One of the most powerful and promising method to overcome this shortcoming and improve the performance of search engines is Query Expansion, whereby the user's original query is augmented by new keywords that best characterize the user's information needs and produce more useful query. In this paper, a new Firefly Algorithm-based approach is proposed to enhance the retrieval effectiveness of query expansion while maintaining low computational complexity. In contrast to the existing literature, the proposed approach uses a Firefly Algorithm to find the best expanded query among a set of expanded query candidates. Moreover, this new approach allows the determination of the length of the expanded query empirically. Experimental results on MEDLINE, the on-line medical information database, show that our proposed approach is more effective and efficient compared to the state-of-the-art.


Assuntos
Algoritmos , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Inteligência Artificial , MEDLINE
19.
Environ Sci Pollut Res Int ; 31(29): 42185-42201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862799

RESUMO

Nano-phytoremediation is a novel green technique to remove toxic pollutants from the environment. In vitro regenerated Ceratophyllum demersum (L.) plants were exposed to different concentrations of chromium (Cr) and exposure times in the presence of titania nanoparticles (TiO2NPs). Response surface methodology was used for multiple statistical analyses like regression analysis and optimizing plots. The supplementation of NPs significantly impacted Cr in water and Cr removal (%), whereas NP × exposure time (T) statistically regulated all output parameters. The Firefly metaheuristic algorithm and the random forest (Firefly-RF) machine learning algorithms were coalesced to optimize hyperparameters, aiming to achieve the highest level of accuracy in predicted models. The R2 scores were recorded as 0.956 for Cr in water, 0.987 for Cr in the plant, 0.992 for bioconcentration factor (BCF), and 0.957 for Cr removal through the Firefly-RF model. The findings illustrated superior prediction performance from the random forest models when compared to the response surface methodology. The conclusion is drawn that metal-based nanoparticles (NPs) can effectively be utilized for nano-phytoremediation of heavy metals. This study has uncovered a promising outlook for the utilization of nanoparticles in nano-phytoremediation. This study is expected to pave the way for future research on the topic, facilitating further exploration of various nanoparticles and a thorough evaluation of their potential in aquatic ecosystems.


Assuntos
Algoritmos , Biodegradação Ambiental , Cromo , Poluentes Químicos da Água , Nanopartículas , Algoritmo Florestas Aleatórias
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124245, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581722

RESUMO

Simeprevir and daclatasvir represent a cornerstone in the management of Hepatitis C Virus infection, a global health concern that affects millions of people worldwide. In this study, we propose a synergistic approach combining synchronous spectrofluorimetry and chemometric modeling i.e. Partial Least Squares (PLS-1) for the analysis of simeprevir and daclatasvir in different matrices. Moreover, the study employs firefly algorithms to further optimize the chemometric models via selecting the most informative features thus improving the accuracy and robustness of the calibration models. The firefly algorithm was able to reduce the number of selected wavelengths to 47-44% for simeprevir and daclatasvir, respectively offering a fast and sensitive technique for the determination of simeprevir and daclatasvir. Validation results underscore the models' effectiveness, as evidenced by recovery rates close to 100% with relative root mean square error of prediction (RRMSEP) of 2.253 and 2.1381 for simeprevir and daclatasvir, respectively. Moreover, the proposed models have been applied to determine the pharmacokinetics of simeprevir and daclatasvir, providing valuable insights into their distribution and elimination patterns. Overall, the study demonstrates the effectiveness of synchronous spectrofluorimetry coupled with multivariate calibration optimized by firefly algorithms in accurately determining and quantifying simeprevir and daclatasvir in HCV antiviral treatment, offering potential applications in pharmaceutical formulation analysis and pharmacokinetic studies for these drugs.


Assuntos
Carbamatos , Imidazóis , Pirrolidinas , Simeprevir , Espectrometria de Fluorescência , Valina , Valina/análogos & derivados , Imidazóis/farmacocinética , Imidazóis/química , Valina/farmacocinética , Simeprevir/farmacocinética , Simeprevir/análise , Pirrolidinas/química , Carbamatos/farmacocinética , Análise dos Mínimos Quadrados , Espectrometria de Fluorescência/métodos , Algoritmos , Antivirais/farmacocinética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA