Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35678336

RESUMO

Peroxisome membrane dynamics and division are essential to adapt the peroxisomal compartment to cellular needs. The peroxisomal membrane protein PEX11ß (also known as PEX11B) and the tail-anchored adaptor proteins FIS1 (mitochondrial fission protein 1) and MFF (mitochondrial fission factor), which recruit the fission GTPase DRP1 (dynamin-related protein 1, also known as DNML1) to both peroxisomes and mitochondria, are key factors of peroxisomal division. The current model suggests that MFF is essential for peroxisome division, whereas the role of FIS1 is unclear. Here, we reveal that PEX11ß can promote peroxisome division in the absence of MFF in a DRP1- and FIS1-dependent manner. We also demonstrate that MFF permits peroxisome division independently of PEX11ß and restores peroxisome morphology in PEX11ß-deficient patient cells. Moreover, targeting of PEX11ß to mitochondria induces mitochondrial division, indicating the potential for PEX11ß to modulate mitochondrial dynamics. Our findings suggest the existence of an alternative, MFF-independent pathway in peroxisome division and report a function for FIS1 in the division of peroxisomes. This article has an associated First Person interview with the first authors of the paper.


Assuntos
Dinâmica Mitocondrial , Peroxissomos , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo
2.
EMBO Rep ; 23(2): e48754, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994490

RESUMO

Mitochondria are unavoidably subject to organellar stress resulting from exposure to a range of reactive molecular species. Consequently, cells operate a poorly understood quality control programme of mitophagy to facilitate elimination of dysfunctional mitochondria. Here, we used a model stressor, deferiprone (DFP), to investigate the molecular basis for stress-induced mitophagy. We show that mitochondrial fission 1 protein (Fis1) is required for DFP-induced mitophagy and that Fis1 is SUMOylated at K149, an amino acid residue critical for Fis1 mitochondrial localization. We find that DFP treatment leads to the stabilization of the SUMO protease SENP3, which is mediated by downregulation of the E3 ubiquitin (Ub) ligase CHIP. SENP3 is responsible for Fis1 deSUMOylation and depletion of SENP3 abolishes DFP-induced mitophagy. Furthermore, preventing Fis1 SUMOylation by conservative K149R mutation enhances Fis1 mitochondrial localization. Critically, expressing a Fis1 K149R mutant restores DFP-induced mitophagy in SENP3-depleted cells. Thus, we propose a model in which SENP3-mediated deSUMOylation facilitates Fis1 mitochondrial localization to underpin stress-induced mitophagy.


Assuntos
Mitocôndrias , Peptídeo Hidrolases , Autofagia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia , Peptídeo Hidrolases/metabolismo
3.
Cell Mol Biol Lett ; 29(1): 31, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439028

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common clinical disorder with complex etiology and poor prognosis, and currently lacks specific and effective treatment options. Mitochondrial dynamics dysfunction is a prominent feature in AKI, and modulation of mitochondrial morphology may serve as a potential therapeutic approach for AKI. METHODS: We induced ischemia-reperfusion injury (IRI) in mice (bilateral) and Bama pigs (unilateral) by occluding the renal arteries. ATP depletion and recovery (ATP-DR) was performed on proximal renal tubular cells to simulate in vitro IRI. Renal function was evaluated using creatinine and urea nitrogen levels, while renal structural damage was assessed through histopathological staining. The role of Drp1 was investigated using immunoblotting, immunohistochemistry, immunofluorescence, and immunoprecipitation techniques. Mitochondrial morphology was evaluated using confocal microscopy. RESULTS: Renal IRI induced significant mitochondrial fragmentation, accompanied by Dynamin-related protein 1 (Drp1) translocation to the mitochondria and Drp1 phosphorylation at Ser616 in the early stages (30 min after reperfusion), when there was no apparent structural damage to the kidney. The use of the Drp1 inhibitor P110 significantly improved kidney function and structural damage. P110 reduced Drp1 mitochondrial translocation, disrupted the interaction between Drp1 and Fis1, without affecting the binding of Drp1 to other mitochondrial receptors such as MFF and Mid51. High-dose administration had no apparent toxic side effects. Furthermore, ATP-DR induced mitochondrial fission in renal tubular cells, accompanied by a decrease in mitochondrial membrane potential and an increase in the translocation of the pro-apoptotic protein Bax. This process facilitated the release of dsDNA, triggering the activation of the cGAS-STING pathway and promoting inflammation. P110 attenuated mitochondrial fission, suppressed Bax mitochondrial translocation, prevented dsDNA release, and reduced the activation of the cGAS-STING pathway. Furthermore, these protective effects of P110 were also observed renal IRI model in the Bama pig and folic acid-induced nephropathy in mice. CONCLUSIONS: Dysfunction of mitochondrial dynamics mediated by Drp1 contributes to renal IRI. The specific inhibitor of Drp1, P110, demonstrated protective effects in both in vivo and in vitro models of AKI.


Assuntos
Injúria Renal Aguda , Animais , Camundongos , Suínos , Proteína X Associada a bcl-2 , Dinaminas , Nucleotidiltransferases , Trifosfato de Adenosina
4.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982862

RESUMO

Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly vibrant movement and distribution of mitochondria within cells is controlled by the highly coordinated interplay between mitochondrial dynamic processes and fission and fusion events, as well as mitochondrial quality-control processes, mainly mitochondrial autophagy (also known as mitophagy). Fusion connects and unites neighboring depolarized mitochondria to derive a healthy and distinct mitochondrion. In contrast, fission segregates damaged mitochondria from intact and healthy counterparts and is followed by selective clearance of the damaged mitochondria via mitochondrial specific autophagy, i.e., mitophagy. Hence, the mitochondrial processes encompass all coordinated events of fusion, fission, mitophagy, and biogenesis for sustaining mitochondrial homeostasis. Accumulated evidence strongly suggests that mitochondrial impairment has already emerged as a core player in the pathogenesis, progression, and development of various human diseases, including cardiovascular ailments, the leading causes of death globally, which take an estimated 17.9 million lives each year. The crucial factor governing the fission process is the recruitment of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, from the cytosol to the outer mitochondrial membrane in a guanosine triphosphate (GTP)-dependent manner, where it is oligomerized and self-assembles into spiral structures. In this review, we first aim to describe the structural elements, functionality, and regulatory mechanisms of the key mitochondrial fission protein, Drp1, and other mitochondrial fission adaptor proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics 49 (Mid49), and mitochondrial dynamics 51 (Mid51). The core area of the review focuses on the recent advances in understanding the role of the Drp1-mediated mitochondrial fission adaptor protein interactome to unravel the missing links of mitochondrial fission events. Lastly, we discuss the promising mitochondria-targeted therapeutic approaches that involve fission, as well as current evidence on Drp1-mediated fission protein interactions and their critical roles in the pathogeneses of cardiovascular diseases (CVDs).


Assuntos
Doenças Cardiovasculares , Dinâmica Mitocondrial , Humanos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo
5.
EMBO Rep ; 21(2): e49865, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31894645

RESUMO

Peroxisomes are essential for a number of cellular functions, including reactive oxygen species metabolism, fatty acid ß-oxidation and lipid synthesis. To ensure optimal functionality, peroxisomal size, shape and number must be dynamically maintained; however, many aspects of how this is regulated remain poorly characterised. Here, we show that the localisation of Miro1 and Miro2-outer mitochondrial membrane proteins essential for mitochondrial trafficking-to peroxisomes is not required for basal peroxisomal distribution and long-range trafficking, but rather for the maintenance of peroxisomal size and morphology through peroxisomal fission. Mechanistically, this is achieved by Miro negatively regulating Drp1-dependent fission, a function that is shared with the mitochondria. We further find that the peroxisomal localisation of Miro is regulated by its first GTPase domain and is mediated by an interaction through its transmembrane domain with the peroxisomal-membrane protein chaperone, Pex19. Our work highlights a shared regulatory role of Miro in maintaining the morphology of both peroxisomes and mitochondria, supporting a crosstalk between peroxisomal and mitochondrial biology.


Assuntos
Proteínas Mitocondriais , Proteínas rho de Ligação ao GTP , Animais , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012188

RESUMO

Recent evidence shows that methamphetamine (METH) produces mitochondrial alterations that contribute to neurotoxicity. Nonetheless, most of these studies focus on mitochondrial activity, whereas mitochondrial morphology remains poorly investigated. In fact, morphological evidence about the fine structure of mitochondria during METH toxicity is not available. Thus, in the present study we analyzed dose-dependent mitochondrial structural alterations during METH exposure. Light and transmission electron microscopy were used, along with ultrastructural stoichiometry of catecholamine cells following various doses of METH. In the first part of the study cell death and cell degeneration were assessed and they were correlated with mitochondrial alterations observed using light microscopy. In the second part of the study, ultrastructural evidence of specific mitochondrial alterations of crests, inner and outer membranes and matrix were quantified, along with in situ alterations of mitochondrial proteins. Neurodegeneration induced by METH correlates significantly with specific mitochondrial damage, which allows definition of a scoring system for mitochondrial integrity. In turn, mitochondrial alterations are concomitant with a decrease in fission/mitophagy protein Fis1 and DRP1 and an increase in Pink1 and Parkin in situ, at the mitochondrial level. These findings provide structural evidence that mitochondria represent both direct and indirect targets of METH-induced toxicity.


Assuntos
Metanfetamina , Metanfetamina/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Diabetologia ; 64(2): 424-436, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258025

RESUMO

AIMS/HYPOTHESIS: Mitochondria operate in networks, adapting to external stresses and changes in cellular metabolic demand and are subject to various quality control mechanisms. On the basis of these traits, we here hypothesise that the regulation of mitochondrial networks in skeletal muscle is hampered in humans with compromised oxidative capacity and insulin sensitivity. METHODS: In a cross-sectional design, we compared four groups of participants (selected from previous studies) ranging in aerobic capacity and insulin sensitivity, i.e. participants with type 2 diabetes (n = 11), obese participants without diabetes (n = 12), lean individuals (n = 10) and endurance-trained athletes (n = 12); basal, overnight fasted muscle biopsies were newly analysed for the current study and we compared the levels of essential mitochondrial dynamics and quality control regulatory proteins in skeletal muscle tissue. RESULTS: Type 2 diabetes patients and obese participants were older than lean participants and athletes (58.6 ± 4.0 and 56.7 ± 7.2 vs 21.8 ± 2.5 and 25.1 ± 4.3 years, p < 0.001, respectively) and displayed a higher BMI (32.4 ± 3.7 and 31.0 ± 3.7 vs 22.1 ± 1.8 and 21.0 ± 1.5 kg/m2, p < 0.001, respectively) than lean individuals and endurance-trained athletes. Fission protein 1 (FIS1) and optic atrophy protein 1 (OPA1) protein content was highest in muscle from athletes and lowest in participants with type 2 diabetes and obesity, respectively (FIS1: 1.86 ± 0.79 vs 0.79 ± 0.51 AU, p = 0.002; and OPA1: 1.55 ± 0.64 vs 0.76 ± 0.52 AU, p = 0.014), which coincided with mitochondrial network fragmentation in individuals with type 2 diabetes, as assessed by confocal microscopy in a subset of type 2 diabetes patients vs endurance-trained athletes (n = 6). Furthermore, lean individuals and athletes displayed a mitonuclear protein balance that was different from obese participants and those with type 2 diabetes. Mitonuclear protein balance also associated with heat shock protein 60 (HSP60) protein levels, which were higher in athletes when compared with participants with obesity (p = 0.048) and type 2 diabetes (p = 0.002), indicative for activation of the mitochondrial unfolded protein response. Finally, OPA1, FIS1 and HSP60 correlated positively with aerobic capacity (r = 0.48, p = 0.0001; r = 0.55, p < 0.001 and r = 0.61, p < 0.0001, respectively) and insulin sensitivity (r = 0.40, p = 0.008; r = 0.44, p = 0.003 and r = 0.48, p = 0.001, respectively). CONCLUSIONS/INTERPRETATION: Collectively, our data suggest that mitochondrial dynamics and quality control in skeletal muscle are linked to oxidative capacity in humans, which may play a role in the maintenance of muscle insulin sensitivity. CLINICAL TRIAL REGISTRY: numbers NCT00943059, NCT01298375 and NL1888 Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Atletas , Biópsia , Estudos de Casos e Controles , Chaperonina 60/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/patologia , Obesidade/patologia , Oxirredução , Consumo de Oxigênio , Adulto Jovem
8.
EMBO J ; 36(10): 1330-1347, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28377463

RESUMO

Pluripotent stem cells are known to display distinct metabolic phenotypes than their somatic counterparts. While accumulating studies are focused on the roles of glucose and amino acid metabolism in facilitating pluripotency, little is known regarding the role of lipid metabolism in regulation of stem cell activities. Here, we show that fatty acid (FA) synthesis activation is critical for stem cell pluripotency. Our initial observations demonstrated enhanced lipogenesis in pluripotent cells and during cellular reprogramming. Further analysis indicated that de novo FA synthesis controls cellular reprogramming and embryonic stem cell pluripotency through mitochondrial fission. Mechanistically, we found that de novo FA synthesis regulated by the lipogenic enzyme ACC1 leads to the enhanced mitochondrial fission via (i) consumption of AcCoA which affects acetylation-mediated FIS1 ubiquitin-proteasome degradation and (ii) generation of lipid products that drive the mitochondrial dynamic equilibrium toward fission. Moreover, we demonstrated that the effect of Acc1 on cellular reprogramming via mitochondrial fission also exists in human iPSC induction. In summary, our study reveals a critical involvement of the FA synthesis pathway in promoting ESC pluripotency and iPSC formation via regulating mitochondrial fission.


Assuntos
Ácidos Graxos/metabolismo , Dinâmica Mitocondrial , Células-Tronco Pluripotentes/metabolismo , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/metabolismo , Humanos
9.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065350

RESUMO

Glioblastoma (GBM) cells feature mitochondrial alterations, which are documented and quantified in the present study, by using ultrastructural morphometry. Mitochondrial impairment, which roughly occurs in half of the organelles, is shown to be related to mTOR overexpression and autophagy suppression. The novelty of the present study consists of detailing an mTOR-dependent mitophagy occlusion, along with suppression of mitochondrial fission. These phenomena contribute to explain the increase in altered mitochondria reported here. Administration of the mTOR inhibitor rapamycin rescues mitochondrial alterations. In detail, rapamycin induces the expression of genes promoting mitophagy (PINK1, PARKIN, ULK1, AMBRA1) and mitochondrial fission (FIS1, DRP1). This occurs along with over-expression of VPS34, an early gene placed upstream in the autophagy pathway. The topographic stoichiometry of proteins coded by these genes within mitochondria indicates that, a remarkable polarization of proteins involved in fission and mitophagy within mitochondria including LC3 takes place. Co-localization of these proteins within mitochondria, persists for weeks following rapamycin, which produces long-lasting mitochondrial plasticity. Thus, rapamycin restores mitochondrial status in GBM cells. These findings add novel evidence about mitochondria and GBM, while fostering a novel therapeutic approach to restore healthy mitochondria through mTOR inhibition.


Assuntos
Glioblastoma/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Sirolimo/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Mitocôndrias/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
J Mol Cell Cardiol ; 127: 125-133, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550751

RESUMO

Huntington's disease (HD) is a fatal hereditary neurodegenerative disorder, best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances, is caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT). However, in addition to the neurological disease, mutant HTT (mHTT), which is ubiquitously expressed in all tissues, impairs other organ systems. Not surprisingly, cardiovascular dysautonomia as well as the deterioration of circadian rhythms are among the earliest detectable pathophysiological changes in individuals with HD. Mitochondrial dysfunction in the brain and skeletal muscle in HD has been well documented, as the disease progresses. However, not much is known about mitochondrial abnormalities in the heart. In this study, we describe a role for Drp1/Fis1-mediated excessive mitochondrial fission and dysfunction, associated with lysosomal dysfunction in H9C2 expressing long polyglutamine repeat (Q73) and in human iPSC-derived cardiomyocytes transfected with Q77. Expression of long polyglutamine repeat led to reduced ATP production and mitochondrial fragmentation. We observed an increased accumulation of damaged mitochondria in the lysosome that was coupled with lysosomal dysfunction. Importantly, reducing Drp1/Fis1-mediated mitochondrial damage significantly improved mitochondrial function and cell survival. Finally, reducing Fis1-mediated Drp1 recruitment to the mitochondria, using the selective inhibitor of this interaction, P110, improved mitochondrial structure in the cardiac tissue of R6/2 mice. We suggest that drugs focusing on the central nervous system will not address mitochondrial function across all organs, and therefore will not be a sufficient strategy to treat or slow down HD disease progression.


Assuntos
Dinaminas/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Metabolismo Energético , GTP Fosfo-Hidrolases/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/ultraestrutura , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/metabolismo , Expansão das Repetições de Trinucleotídeos
11.
Biochem Biophys Res Commun ; 520(1): 171-178, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31582222

RESUMO

SS-31 is a kind of mitochondrion-targeted peptide. Recent studies indicated significant neuroprotective effects of SS-31. In this study, we investigated that SS-31 protected the murine cultured microglial cells (BV-2) against lipopolysaccharide (LPS)-induced inflammation and oxidative stress through stabilizing mitochondrial morphology. The morphological study showed that SS-31 preserved LPS-induced mitochondrial ultrastructure by reducing the fission protein 1 (Fis1) expression. Flow cytometry and Western blot verified that SS-31 defended the BV-2 cells against LPS-stimulated inflammation and oxidative stress via suppressing Fis1. To sum up, our study represents that SS-31 preserves BV-2 cells from LPS-stimulated inflammation and oxidative stress by down-regulating the Fis1 expression.


Assuntos
Inflamação , Lipopolissacarídeos/metabolismo , Microglia/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oligopeptídeos/farmacologia , Estresse Oxidativo , Animais , Lentivirus/metabolismo , Camundongos , Microglia/metabolismo , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Cell Physiol Biochem ; 51(4): 1778-1798, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504726

RESUMO

BACKGROUND/AIMS: Hyperglycaemia stress-induced renal injury is closely associated with mitochondrial dysfunction through poorly understood mechanisms. The aim of our study is to explore the upstream trigger and the downstream effector driving diabetic nephropathy via modulating mitochondrial homeostasis. METHODS: A diabetic nephropathy model was generated in wild-type (WT) mice and MAP Kinase phosphatase 1 transgenic (MKP1-TG) mice using STZ injection. Cell experiments were conducted via high-glucose treatment in the human renal mesangial cell line (HRMC). MKP1 overexpression assay was carried out via adenovirus transfection. Renal function was evaluated via ELISA, western blotting, histopathological staining, and immunofluorescence. Mitochondrial function was determined via mitochondrial potential analysis, ROS detection, ATP measurement, mitochondrial permeability transition pore (mPTP) opening evaluation, and immunofluorescence for mitochondrial pro-apoptotic factors. Loss- and gain-of-function assays for mitochondrial fragmentation were performed using a pharmacological agonist and blocker. Western blotting and the pathway blocker were used to establish the signalling pathway in response to MKP1 overexpression in the presence of hyperglycaemia stress. RESULTS: MKP1 was downregulated in the presence of chronic high-glucose stress in vivo and in vitro. However, MKP1 overexpression improved the metabolic parameters, enhanced glucose control, sustained renal function, attenuated kidney oxidative stress, inhibited the renal inflammation response, alleviated HRMC apoptosis, and repressed tubulointerstitial fibrosis. Molecular investigation found that MKP1 overexpression enhanced the resistance of HRMC to the hyperglycaemic injury by abolishing mitochondrial fragmentation. Hyperglycaemia-triggered mitochondrial fragmentation promoted mitochondrial dysfunction, as evidenced by decreased mitochondrial potential, elevated mitochondrial ROS production, increased pro-apoptotic factor leakage, augmented mPTP opening and activated caspase-9 apoptotic pathway. Interestingly, MKP1 overexpression strongly abrogated mitochondrial fragmentation and sustained mitochondrial homeostasis via inhibiting the JNK-CaMKII-Fis1 pathway. After re-activation of the JNK-CaMKII-Fis1 pathway, the beneficial effects of MKP1 overexpression on mitochondrial protection disappeared. CONCLUSION: Taken together, our data identified the protective role played by MKP1 in regulating diabetic renal injury via repressing mitochondrial fragmentation and inactivating the JNK-CaMKII-Fis1 pathway, which may pave the road to new therapeutic modalities for the treatment of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/etiologia , Fosfatase 1 de Especificidade Dupla/metabolismo , Hiperglicemia/complicações , Mitocôndrias/patologia , Mitofagia , Transdução de Sinais , Animais , Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Ativação Enzimática , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo
13.
Biochim Biophys Acta ; 1863(5): 971-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26409486

RESUMO

In mammals, peroxisomes perform crucial functions in cellular metabolism, signalling and viral defense which are essential to the health and viability of the organism. In order to achieve this functional versatility peroxisomes dynamically respond to molecular cues triggered by changes in the cellular environment. Such changes elicit a corresponding response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal structure. In mammals the generation of new peroxisomes is a complex process which has clear analogies to mitochondria, with both sharing the same division machinery and undergoing a similar division process. How the regulation of this division process is integrated into the cell's response to different stimuli, the signalling pathways and factors involved, remains somewhat unclear. Here, we discuss the mechanism of peroxisomal fission, the contributions of the various division factors and examine the potential impact of post-translational modifications, such as phosphorylation, on the proliferation process. We also summarize the signalling process and highlight the most recent data linking signalling pathways with peroxisome proliferation.


Assuntos
Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Transporte Biológico , Dinaminas , Retículo Endoplasmático/química , Células Eucarióticas/química , Células Eucarióticas/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mutação , Biogênese de Organelas , Peroxinas , Peroxissomos/química , Plantas/química , Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Leveduras/química , Leveduras/metabolismo
14.
Exp Cell Res ; 349(1): 162-167, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27751838

RESUMO

Acute respiratory distress syndrome (ARDS) is one of the most devastating complications of sepsis lacking of effective therapy. Mitochondrial dynamics undergoing continuous fusion and fission play a crucial role in mitochondrial structure and function. Fis1, as a small protein located on the outer membrane of mitochondria, has been thought to be an important protein mediated mitochondrial fission. During ARDS, alveolar macrophages suffer from increased oxidative stress and apoptosis, and also accompanied by disrupted mitochondrial dynamics. In addition, as one of the products of heme degradation catalyzed by heme oxygenase, carbon monoxide (CO) possesses powerful protective properties in vivo or in vitro models, such as anti-inflammatory, antioxidant and anti-apoptosis function. However, there is little evidence that CO alleviates oxidative stress damage through altering mitochondrial fission in alveolar macrophages. In the present study, our results showed that CO increased cell vitality, improved mitochondrial SOD activity, reduced reactive oxygen species (ROS) production and inhibited cell apoptosis in NR8383 exposed to LPS. Meanwhile, CO decreased the expression of Fis1, increased mitochondrial membrane potential and sustained elongation of mitochondria in LPS-incubated NR8383. Overall, our study underscored a critical role of CO in suppressing the expression of Fis1 and alleviating LPS- induced oxidative stress damage in alveolar macrophages.


Assuntos
Monóxido de Carbono/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteínas Mitocondriais/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Regulação para Baixo/genética , Lipopolissacarídeos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
15.
Handb Exp Pharmacol ; 240: 159-188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28040850

RESUMO

Mitochondria are an essential component of multicellular life - from primitive organisms, to highly complex entities like mammals. The importance of mitochondria is underlined by their plethora of well-characterized essential functions such as energy production through oxidative phosphorylation (OX-PHOS), calcium and reactive oxygen species (ROS) signaling, and regulation of apoptosis. In addition, novel roles and attributes of mitochondria are coming into focus through the recent years of mitochondrial research. In particular, over the past decade the study of mitochondrial shape and dynamics has achieved special significance, as they are found to impact mitochondrial function. Recent advances indicate that mitochondrial function and dynamics are inter-connected, and maintain the balance between health and disease at a cellular and an organismal level. For example, excessive mitochondrial division (fission) is associated with functional defects, and is implicated in multiple human diseases from neurodegenerative diseases to cancer. In this chapter we examine the recent literature on the mitochondrial dynamics-function relationship, and explore how it impacts on the development and progression of human diseases. We will also highlight the implications of therapeutic manipulation of mitochondrial dynamics in treating various human pathologies.


Assuntos
Dinâmica Mitocondrial/fisiologia , Animais , Modelos Animais de Doenças , Dinaminas , GTP Fosfo-Hidrolases/fisiologia , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , Doenças Neurodegenerativas/etiologia
16.
BMC Genomics ; 17: 698, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581076

RESUMO

BACKGROUND: Radio-Adaptive Response (RAR) is a biological defense mechanism whereby exposure to low dose ionizing radiation (IR) mitigates the detrimental effects of high dose irradiation. RAR has been widely observed in vivo using as endpoint less induction of apoptosis. However, sex differences associated with RAR and variations between males and females on global gene expression influenced by RAR have not been still investigated. In addition, the response to radiation-induced apoptosis is associated with phosphorylation of TRP53 at both the serine 15 (ser-18 in the mouse) and serine 392 (ser-389 in mice) residues, but the role of these two phosphorylated forms in male and female RAR remains to be elucidated. RESULTS: We analyzed the effect of administering priming low dose radiation (0.075 Gy of X-rays) prior to high dose radiation (1.75 Gy of γ-rays) on the level of caspase-3-mediated apoptosis and on global transcriptional expression in thymocytes of male and female mice. Here, we provide the first evidence of a differential sex effect of RAR on the reduction of thymocyte apoptosis with males showing lesser levels of caspase-3-mediated apoptosis than females. Analysis of transcriptomic profiles of 1944 genes involved in apoptosis signaling in radio-adapted thymocytes identified 17 transcripts exhibiting differential expression between both sexes. Among them, Dlc1 and Fis1 are closely related to the apoptosis mediated by the TRP53 protein. Our data demonstrate that overexpression of Dlc1 and Fis1 occur concomitantly with a highest accumulation of phosphoserine-18-TRP53 and caspase-3 in radio-adapted thymocytes of female mice. In an opposite way, both down-modulation of Fis1 and phosphoserine-389-TRP53 accumulation appear to be associated with protection from thymocyte apoptosis mediated by caspase-3 in males. CONCLUSIONS: Transcriptomic analysis performed in this work reveals for the first time sex-specific differences in gene expression influenced by RAR. Our results also suggest a sex-dependent dual role for phosphoserine-18-TRP53 and phosphoserine-389-TRP53 in the regulation of the radio-adaptive response in mouse thymocytes.


Assuntos
Caspase 3/metabolismo , Perfilação da Expressão Gênica/métodos , Lectinas Tipo C/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Timócitos/citologia , Proteína Supressora de Tumor p53/metabolismo , Adaptação Fisiológica/efeitos da radiação , Animais , Apoptose , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fosforilação , Caracteres Sexuais , Timócitos/metabolismo , Timócitos/efeitos da radiação
17.
Clin Sci (Lond) ; 130(21): 1861-74, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660309

RESUMO

Mitochondrial morphology is governed by the balance of mitochondrial fusion, mediated by mitofusins and optic atrophy 1 (OPA1), and fission, mediated by dynamin-related protein 1 (Drp1). Disordered mitochondrial dynamics alters metabolism, proliferation, apoptosis and mitophagy, contributing to human diseases, including neurodegenerative syndromes, pulmonary arterial hypertension (PAH), cancer and ischemia/reperfusion injury. Post-translational regulation of Drp1 (by phosphorylation and SUMOylation) is an established means of modulating Drp1 activation and translocation to the outer mitochondrial membrane (OMM). This review focuses on Drp1 adaptor proteins that also regulate fission. The proteins include fission 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49, MiD51). Heterologous MiD overexpression sequesters inactive Drp1 on the OMM, promoting fusion; conversely, increased endogenous MiD creates focused Drp1 multimers that optimize OMM scission. The triggers that activate MiD-bound Drp1 in disease states are unknown; however, MiD51 has a unique capacity for ADP binding at its nucleotidyltransferase domain. Without ADP, MiD51 inhibits Drp1, whereas ADP promotes MiD51-mediated fission, suggesting a link between metabolism and fission. Confusion over whether MiDs mediate fusion (by sequestering inactive Drp1) or fission (by guiding Drp1 assembly) relates to a failure to consider cell types used and to distinguish endogenous compared with heterologous changes in expression. We speculate that endogenous MiDs serve as Drp1-binding partners that are dysregulated in disease states and may be important targets for inhibiting cell proliferation and ischemia/reperfusion injury. Moreover, it appears that the composition of the fission apparatus varies between disease states and amongst individuals. MiDs may be important targets for inhibiting cell proliferation and attenuating ischemia/reperfusion injury.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Animais , Dinaminas , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fatores de Alongamento de Peptídeos/genética
18.
Biochem Biophys Res Commun ; 461(3): 537-42, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25911325

RESUMO

The mitochondrial calcium uniporter (MCU) transports free Ca(2+) into the mitochondrial matrix, maintaining Ca(2+) homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca(2+) concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca(2+) transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury.


Assuntos
Canais de Cálcio/fisiologia , Hipocampo/fisiopatologia , Mitocôndrias/fisiologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Ratos , Ratos Wistar
19.
Int J Biol Sci ; 20(2): 433-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169612

RESUMO

METTL3, an RNA methyltransferase enzyme, exerts therapeutic effects on various cardiovascular diseases. Myocardial ischemia-reperfusion injury (MIRI) and subsequently cardiac fibrosis is linked to acute cardiomyocyte death or dysfunction induced by mitochondrial damage, particularly mitochondrial fission. Our research aims to elucidate the potential mechanisms underlying the therapeutic actions of METTL3 in MIRI, with focus on mitochondrial fission. When compared with Mettl3flox mice subjected to MIRI, Mettl3 cardiomyocyte knockout (Mettl3Cko) mice have reduced infarct size, decreased serum levels of myocardial injury-related factors, limited cardiac fibrosis, and preserved myocardial ultrastructure and contractile/relaxation capacity. The cardioprotective actions of Mettl3 knockout were associated with reduced inflammatory responses, decreased myocardial neutrophil infiltration, and suppression of cardiomyocyte death. Through signaling pathway validation experiments and assays in cultured HL-1 cardiomyocytes exposed to hypoxia/reoxygenation, we confirmed that Mettl3 deficiency interfere with DNA-PKcs phosphorylation, thereby blocking the downstream activation of Fis1 and preventing pathological mitochondrial fission. In conclusion, this study confirms that inhibition of METTL3 can alleviate myocardial cardiac fibrosis inflammation and prevent cardiomyocyte death under reperfusion injury conditions by disrupting DNA-PKcs/Fis1-dependent mitochondrial fission, ultimately improving cardiac function. These findings suggest new approaches for clinical intervention in patients with MIRI.


Assuntos
Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica , Animais , Humanos , Camundongos , Apoptose , DNA/metabolismo , Fibrose , Isquemia/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo
20.
J Exp Clin Cancer Res ; 43(1): 273, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350223

RESUMO

BACKGROUND: The dynamics of mitochondrial respiratory cristae (MRC) and its impact on oxidative phosphorylation (OXPHOS) play a crucial role in driving the progression of high-grade glioma (HGG). However, the underlying mechanism remains unclear. METHODS: In the present study, we employed machine learning-based transmission electron microscopy analysis of 7141 mitochondria from 54 resected glioma patients. Additionally, we conducted bioinformatics analysis and multiplex immunohistochemical (mIHC) staining of clinical glioma microarrays to identify key molecules involved in glioma. Subsequently, we modulated the expression levels of mitochondrial dynamic-1-like protein (DNM1L/DRP1), and its two receptors, mitochondrial fission protein 1 (FIS1) and mitochondrial fission factor (MFF), via lentiviral transfection to further investigate the central role of these molecules in the dynamics of glioblastoma (GBM) cells and glioma stem cells (GSCs). We then evaluated the potential impact of DNM1L/DRP1, FIS1, and MFF on the proliferation and progression of GBM cells and GSCs using a combination of CCK-8 assay, Transwell assay, Wound Healing assay, tumor spheroid formation assay and cell derived xenograft assay employing NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG) mouse model. Subsequently, we validated the ability of the DNM1L/DRP1-FIS1 axis to remodel MRC structure through mitophagy by utilizing Seahorse XF analysis technology, mitochondrial function detection, MRC abundance detection and monitoring dynamic changes in mitophagy. RESULTS: Our findings revealed that compared to low-grade glioma (LGG), HGG exhibited more integrated MRC structures. Further research revealed that DNM1L/DRP1, FIS1, and MFF played pivotal roles in governing mitochondrial fission and remodeling MRC in HGG. The subsequent validation demonstrated that DNM1L/DRP1 exerts a positive regulatory effect on FIS1, whereas the interaction between MFF and FIS1 demonstrates a competitive inhibition relationship. The down-regulation of the DNM1L/DRP1-FIS1 axis significantly impaired mitophagy, thereby hindering the remodeling of MRC and inhibiting OXPHOS function in glioma, ultimately leading to the inhibition of its aggressive progression. In contrast, MFF exerts a contrasting effect on MRC integrity, OXPHOS activity, and glioma progression. CONCLUSIONS: This study highlights that the DNM1L/DRP1-FIS1 axis stabilizes MRC structures through mitophagy in HGG cells while driving their OXPHOS activity ultimately leading to robust disease progression. The inhibition of the DNM1L/DRP1-FIS1 axis hinders MRC remodeling and suppresses GBM progression. We propose that down-regulation of the DNM1L/DRP1-FIS1 axis could be a potential therapeutic strategy for treating HGG.


Assuntos
Progressão da Doença , Dinaminas , Glioma , Mitocôndrias , Proteínas Mitocondriais , Humanos , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Camundongos , Animais , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocôndrias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Feminino , Gradação de Tumores , Masculino , Linhagem Celular Tumoral , Dinâmica Mitocondrial , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Proliferação de Células , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA