Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Naturwissenschaften ; 109(1): 3, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874484

RESUMO

The concept of mimicry has been developed for animals, but it also applies to plants. Plant species may be Müllerian mimics if they have similar reproductive traits and offer similar rewards to the pollinators. Several Oncidiinae orchids offer floral oils to their pollinators and have been suggested to form a Müllerian complex with species of Malpighiaceae. We provide a test of this hypothesis using Gomesa flexuosa (Orchidaceae) and Janusia guaranitica (Malpighiaceae), which are sympatric and phenologically synchronous, secrete the same floral resource (oils), and show similar flower morphology. We exposed individuals of Gomesa near and far from individuals of Janusia and monitored floral visitation. Both species were exclusively pollinated by oil-collecting bees, sharing Centris trigonoides as a pollinator. Nevertheless, the probability of bee visitation, number of contact approximations, and number of visits to flowers of Gomesa were similar when individuals were near and far from Janusia. These findings do not support the Müllerian mimicry hypothesis in these two species. Their resemblances can be better explained by the "exploitation of perceptual biases" hypothesis. According to this hypothesis, pre-existing traits in Oncidiinae orchids (e.g. colour, shape, rewards) may coopt oil-collecting bees that usually search for rewards in Malpighiaceae species with similar flower traits.


Assuntos
Mimetismo Biológico , Malpighiaceae , Orchidaceae , Animais , Abelhas , Flores , Óleos , Polinização
2.
Oecologia ; 197(3): 577-588, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34546496

RESUMO

The composition of plant-pollinator interactions-i.e., who interacts with whom in diverse communities-is highly dynamic, and we have a very limited understanding of how interaction identities change in response to perturbations in nature. One prediction from niche and diet theory is that resource niches will broaden to compensate for resource reductions driven by perturbations, yet this has not been empirically tested in plant-pollinator systems in response to real-world perturbations in the field. Here, we use a long-term dataset of floral visitation to Ipomopsis aggregata, a montane perennial herb, to test whether the breadth of its floral visitation niche (i.e., flower visitor richness) changed in response to naturally occurring drought perturbations. Fewer floral resources are available in drought years, which could drive pollinators to expand their foraging niches, thereby expanding plants' floral visitation niches. We compared two drought years to three non-drought years to analyze changes in niche breadth and community composition of floral visitors to I. aggregata, predicting broadened niche breadth and distinct visitor community composition in drought years compared to non-drought years. We found statistically significant increases in niche breadth in drought years as compared to non-drought conditions, but no statistically distinguishable changes in community composition of flower visitors. Our findings suggest that plants' floral visitation niches may exhibit considerable plasticity in response to disturbance. This may have widespread consequences for community-level stability as well as functional consequences if increased niche overlap affects pollination services.


Assuntos
Secas , Polinização , Flores , Plantas
3.
Proc Biol Sci ; 285(1870)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321298

RESUMO

The western honey bee (Apis mellifera) is the most frequent floral visitor of crops worldwide, but quantitative knowledge of its role as a pollinator outside of managed habitats is largely lacking. Here we use a global dataset of 80 published plant-pollinator interaction networks as well as pollinator effectiveness measures from 34 plant species to assess the importance of A. mellifera in natural habitats. Apis mellifera is the most frequent floral visitor in natural habitats worldwide, averaging 13% of floral visits across all networks (range 0-85%), with 5% of plant species recorded as being exclusively visited by A. mellifera For 33% of the networks and 49% of plant species, however, A. mellifera visitation was never observed, illustrating that many flowering plant taxa and assemblages remain dependent on non-A. mellifera visitors for pollination. Apis mellifera visitation was higher in warmer, less variable climates and on mainland rather than island sites, but did not differ between its native and introduced ranges. With respect to single-visit pollination effectiveness, A. mellifera did not differ from the average non-A. mellifera floral visitor, though it was generally less effective than the most effective non-A. mellifera visitor. Our results argue for a deeper understanding of how A. mellifera, and potential future changes in its range and abundance, shape the ecology, evolution, and conservation of plants, pollinators, and their interactions in natural habitats.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Ecossistema , Polinização , Animais , Produtos Agrícolas/fisiologia , Conjuntos de Dados como Assunto , Flores/fisiologia , Mel , Pólen , Análise de Regressão
4.
Ecology ; 99(6): 1480-1489, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29676019

RESUMO

Pollination is critical for plant fitness and population dynamics, yet little attention is paid to the role of flowering and plant-pollinator interactions in structuring plant communities, including community responses to environmental change. Changes in arbuscular mycorrhizal fungi (AMF), nutrient abundances, and plant litter all affect plant access to different resources, and are known regulators of community structure. Each factor can also affect flowering and plant-pollinator interactions, potentially contributing to changes in community structure. To test whether AMF, nutrients, and litter influenced the relationship between pollination and community structure, we conducted a 5-yr field experiment applying fungicide, adding fertilizer, and removing plant litter in native grassland. We measured the distribution of flowers and floral visits among species in year three and linked these measures to changes in plant composition and species richness between years three and five. We hypothesized that an uneven distribution of flowers and visits among species would lead to greater community change, but that the treatments would disrupt this relationship by altering sexual allocation and recruitment. Consistent with our hypothesis, communities with uneven flower distributions exhibited greater changes in community composition and richness under ambient conditions. However, AMF suppression neutralized this relationship and regulated the other treatment effects, highlighting the potential importance of AMF for stabilizing recruitment dynamics. Combined, AMF suppression and nutrient addition caused species losses when few species flowered, likely by compounding stresses for those species. The treatment effects on the relationship between flowering and community composition were more nuanced, but were likely driven by increased competition and altered flowering among species. By contrast, community composition was more stable when visitation rates were uneven among species, irrespective of any treatments. This suggests that some species require high visitation rates to maintain their populations due to greater dependence on sexual reproduction. Combined, these results highlight the importance of flowering and floral visitation to the dynamics of grassland communities. They also suggest that altered recruitment dynamics is a major, yet understudied, mechanism by which environmental change affects communities. Consequently, understanding the effects of environmental change on plant communities will require study of both plant growth and sexual reproduction.


Assuntos
Micorrizas , Flores , Plantas/microbiologia , Polinização , Reprodução
5.
AoB Plants ; 16(2): plae010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38497048

RESUMO

Premise of the study: On islands, flowering plants tend to be more generalist in their pollination needs, as insects (the main pollinators of flowering plants) are underrepresented in these ecosystems compared to the mainland. In addition, some vertebrate species that are typically insectivorous or granivorous on the mainland are forced to broaden their diet and consume other resources such as nectar or pollen on the islands. The shrub Malva arborea, with its large and colourful flowers, attracts different groups of potential pollinators. This study aimed to compare the effectiveness of vertebrates versus insects in an insular population of M. arborea and to investigate its reproductive system. Methods: For three groups of taxa (insects, birds and lizards), we assessed the two components of pollination effectiveness: (i) the quantitative component (i.e. number of visits and number of flowers contacted) through direct observations of flowers; and (ii) the qualitative component (fruit and seed set, number and size of seeds and proportion of seedling emergence) through pollinator exclusion experiments. Key results: Vertebrates (birds and lizards) were quantitatively the most effective pollinators, followed by insects. However, when all three groups visited the flowers, fruit and seed set were higher than when any of them were excluded. We also found that M. arborea has hermaphrodite flowers and is able to reproduce by autogamy, although less efficiently than when pollinated by animals. Conclusions: Both vertebrates and insects play an important role in the reproduction of M. arborea. Although the plant does not need pollinators to produce seeds, its reproductive success increases when all pollinators are allowed to visit the flowers. Besides providing new information on M. arborea, these findings may help to better understand the role of different pollinator groups in the reproduction of other plant species, especially on islands where the co-occurrence of vertebrate and invertebrate pollination in the same plant species is usual.

6.
PeerJ ; 9: e11634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395063

RESUMO

Many pollination studies with honey bees have examined the effect of colony density on crop yield and yet overlook the effect of variation in the population size of these colonies. High colony density in northern highbush blueberry has been met with concerns from beekeepers who feel higher densities will intensify outbreaks of European foulbrood (EFB, Melissococcus plutonius, Truper and dé Clari), a honey bee brood disease. The purpose of this study was to confirm the prevalence of EFB in colonies pollinating blueberries and to determine whether field-level variation in the population of adult workers in colonies explained variation in blueberry fruit set and/or yield. We addressed these objectives over the course of two production seasons at 13 commercial blueberry fields in Oregon, USA, stocked with identical densities of 10 colonies/ha. We confirmed that all colonies had negligible symptoms of EFB at the start of blueberry pollination, but 53% of colonies in 2019 and 41% in 2020 had symptoms immediately following the pollination season. We also validated a method for rapidly assessing adult honey bee colony populations, namely by counting the rate of foragers returning to colonies, and it was found to be strongly correlated to true internal adult bee population independent of year and ambient temperature at the time of evaluation. Using returning forager counts, we determined there was considerable variation in the average population of colonies at each field, ranging from an estimated 10,300 to 30,700 adult worker bees per colony. While average colony strength did not predict variation in fruit set, it was related to variation in yield, independent of year. Our linear model of flight count (as a proxy for colony strength) predicts estimated yield increases of up to 25,000 kg/ha of blueberries could be achieved by colonies stronger than the recommended six frame minimum, suggesting that higher pollination benefits could be achieved without increasing hive density if stronger colonies are promoted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA