Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2209569120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724253

RESUMO

Two-pore channels (TPCs) are activated by phosphatidylinositol bisphosphate (PIP2) binding to domain I and/or by voltage sensing in domain II (DII). Little is known about how these two stimuli are integrated, and how each TPC subtype achieves its unique preference. Here, we show that distinct conformations of DII-S4 in the voltage-sensor domain determine the two gating modes. DII-S4 adopts an intermediate conformation, and forced stabilization in this conformation was found to result in a high PIP2-dependence in primarily voltage-dependent TPC3. In TPC2, which is PIP2-gated and nonvoltage-dependent, a stabilized intermediate conformation does not affect the PIP2-gated currents. These results indicate that the intermediate state represents the PIP2-gating mode, which is distinct from the voltage-gating mode in TPCs. We also found in TPC2 that the tricyclic antidepressant desipramine induces DII-S4-based voltage dependence and that naringenin, a flavonoid, biases the mode preference from PIP2-gating to desipramine-induced voltage gating. Taken together, our study on TPCs revealed an unprecedented mode-switching mechanism involving conformational changes in DII-S4, and its active role in integrating voltage and PIP2 stimuli.


Assuntos
Desipramina , Ativação do Canal Iônico , Estrutura Terciária de Proteína , Fosfatos de Fosfatidilinositol/metabolismo
2.
J Biol Chem ; 300(5): 107215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522518

RESUMO

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Assuntos
Fluorometria , Glucose , Oócitos , Transportador 1 de Glucose-Sódio , Xenopus laevis , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/química , Animais , Humanos , Fluorometria/métodos , Glucose/metabolismo , Oócitos/metabolismo , Ligação Proteica , Técnicas de Patch-Clamp , Galactose/metabolismo , Frutose/metabolismo , Frutose/química , Sítios de Ligação
3.
Proc Natl Acad Sci U S A ; 119(17): e2113675119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439054

RESUMO

We report on a heterozygous KCNA2 variant in a child with epilepsy. KCNA2 encodes KV1.2 subunits, which form homotetrameric potassium channels and participate in heterotetrameric channel complexes with other KV1-family subunits, regulating neuronal excitability. The mutation causes substitution F233S at the KV1.2 charge transfer center of the voltage-sensing domain. Immunocytochemical trafficking assays showed that KV1.2(F233S) subunits are trafficking deficient and reduce the surface expression of wild-type KV1.2 and KV1.4: a dominant-negative phenotype extending beyond KCNA2, likely profoundly perturbing electrical signaling. Yet some KV1.2(F233S) trafficking was rescued by wild-type KV1.2 and KV1.4 subunits, likely in permissible heterotetrameric stoichiometries: electrophysiological studies utilizing applied transcriptomics and concatemer constructs support that up to one or two KV1.2(F233S) subunits can participate in trafficking-capable heterotetramers with wild-type KV1.2 or KV1.4, respectively, and that both early and late events along the biosynthesis and secretion pathway impair trafficking. These studies suggested that F233S causes a depolarizing shift of ∼48 mV on KV1.2 voltage dependence. Optical tracking of the KV1.2(F233S) voltage-sensing domain (rescued by wild-type KV1.2 or KV1.4) revealed that it operates with modestly perturbed voltage dependence and retains pore coupling, evidenced by off-charge immobilization. The equivalent mutation in the Shaker K+ channel (F290S) was reported to modestly affect trafficking and strongly affect function: an ∼80-mV depolarizing shift, disrupted voltage sensor activation and pore coupling. Our work exposes the multigenic, molecular etiology of a variant associated with epilepsy and reveals that charge-transfer-center disruption has different effects in KV1.2 and Shaker, the archetypes for potassium channel structure and function.


Assuntos
Epilepsia , Membrana Celular/metabolismo , Criança , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/metabolismo , Mutação , Potássio/metabolismo , Canais de Potássio/metabolismo
4.
Cytometry A ; 105(3): 203-213, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37864330

RESUMO

Microalgae, small photosynthetic unicells, are of great interest to ecology, ecotoxicology and biotechnology and there is a growing need to investigate the ability of cells to photosynthesize under variable conditions. Current strategies involve hand-operated pulse-amplitude-modulated (PAM) chlorophyll fluorimeters, which can provide detailed insights into the photophysiology of entire populations- or individual cells of microalgae but are typically limited in their throughput. To increase the throughput of a commercially available MICROSCOPY-PAM system, we present the PAM Automation Control Manager ('PACMan'), an open-source Python software package that automates image acquisition, microscopy stage control and the triggering of external hardware components. PACMan comes with a user-friendly graphical user interface and is released together with a stand-alone tool (PAMalysis) for the automated calculation of per-cell maximum quantum efficiencies (= Fv /Fm ). Using these two software packages, we successfully tracked the photophysiology of >1000 individual cells of green algae (Chlamydomonas reinhardtii) and dinoflagellates (genus Symbiodiniaceae) within custom-made microfluidic devices. Compared to the manual operation of MICROSCOPY-PAM systems, this represents a 10-fold increase in throughput. During experiments, PACMan coordinated the movement of the microscope stage and triggered the MICROSCOPY-PAM system to repeatedly capture high-quality image data across multiple positions. Finally, we analyzed single-cell Fv /Fm with the manufacturer-supplied software and PAMalysis, demonstrating a median difference <0.5% between both methods. We foresee that PACMan, and its auxiliary software package will help increase the experimental throughput in a range of microalgae studies currently relying on hand-operated MICROSCOPY-PAM technologies.


Assuntos
Dinoflagellida , Microalgas , Clorofila , Fotossíntese/fisiologia , Fluorometria , Software
5.
Plant Cell Environ ; 47(3): 992-1002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098202

RESUMO

We present an alternative method to determine leaf CO2 assimilation rate (An ), eliminating the need for gas exchange measurements in proximal and remote sensing. This method combines the Farquhar-von Caemmerer-Berry photosynthesis model with mechanistic light reaction (MLR) theory and leaf energy balance (EB) analysis. The MLR theory estimates the actual electron transport rate (J) by leveraging chlorophyll fluorescence via pulse amplitude-modulated fluorometry for proximal sensing or sun-induced chlorophyll fluorescence measurements for remote sensing, along with spectral reflectance. The EB equation is used to directly estimate stomatal conductance from leaf temperature. In wheat and soybean, the MLR-EB model successfully estimated An variations, including midday depression, under various environmental and phenological conditions. Sensitivity analysis revealed that the leaf boundary layer conductance (gb ) played an equal, if not more, crucial role compared to the variables for J. This was primarily caused by the indirect influence of gb through the EB equation rather than its direct impact on convective CO2 exchange on the leaf. Although the MLR-EB model requires an accurate estimation of gb , it can potentially reduce uncertainties and enhance applicability in photosynthesis assessment when gas exchange measurements are unavailable.


Assuntos
Dióxido de Carbono , Clorofila , Modelos Biológicos , Fotossíntese , Folhas de Planta
6.
Photochem Photobiol Sci ; 23(2): 285-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143251

RESUMO

Environmental variation has a significant impact on how organisms, including cyanobacteria, respond physiologically and biochemically. Salinity and ultraviolet radiation (UVR)-induced variations in the photopigments of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21 and its photosynthetic performance was studied. We observed that excessive energy dissipation after UVR is mostly caused by Non-Photochemical Quenching (NPQ), whereas photochemical quenching is important for preventing photoinhibition. These findings suggest that ROS production may play an important role in the UVR-induced injury. To reduce ROS-induced oxidative stress, Nostochopsis lobatus HKAR-21 induces the effective antioxidant systems, which includes different antioxidant compounds like carotenoids and enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). The study indicates that Nostochopsis lobatus HKAR-21 exposed to photosynthetically active radiation + UV-A + UV-B (PAB) and PAB + NaCl (PABN) had significantly reduced photosynthetic efficiency. Furthermore, maximum ROS was detected in PAB exposed cyanobacterial cells. The induction of lipid peroxidation (LPO) has been investigated to evaluate the impact of UVR on the cyanobacterial membrane in addition to enzymatic defensive systems. The maximal LPO level was found in PABN treated cells. Based on the findings of this research, it was concluded that salinity and UVR had collegial effects on the major macromolecular components of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21.


Assuntos
Cianobactérias , Oryza , Raios Ultravioleta , Antioxidantes/farmacologia , Oryza/efeitos da radiação , Cloreto de Sódio/farmacologia , Espécies Reativas de Oxigênio , Cianobactérias/metabolismo , Fotossíntese/efeitos da radiação , Superóxido Dismutase/metabolismo
7.
Microb Ecol ; 87(1): 40, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351424

RESUMO

It has long been hypothesized that benthic motile pennate diatoms use phototaxis to optimize photosynthesis and minimize photoinhibitory damage by adjusting their position within vertical light gradients in coastal benthic sediments. However, experimental evidence to test this hypothesis remains inconclusive, mainly due to methodological difficulties in studying cell behavior and photosynthesis over realistic spatial microscale gradients of irradiance and cell position. In this study, a novel experimental approach was developed and used to test the hypothesis of photosynthesis optimization through motility, based on the combination of single-cell in vivo chlorophyll fluorometry and microfluidic chips. The approach allows the concurrent study of behavior and photosynthetic activity of individual cells of the epipelic diatom species Craspedostauros britannicus exposed to a light microgradient of realistic dimensions, simulating the irradiance and distance scales of light microgradients in benthic sediments. Following exposure to light, (i) cells explored their light environment before initiating light-directed motility; (ii) cells used motility to lower their light dose, when exposed to the highest light intensities; and (iii) motility was combined with reversible non-photochemical quenching, to allow cells to avoid photoinhibition. The results of this proof-of-concept study not only strongly support the photoprotective nature of photobehavior in the studied species but also revealed considerable variability in how individual cells reacted to a light microgradient. The experimental setup can be readily applied to study motility and photosynthetic light responses of other diatom species or natural assemblages, as well as other photoautotrophic motile microorganisms, broadening the toolset for experimental microbial ecology research.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Fotossíntese , Clorofila , Luz , Movimento Celular
8.
J Fluoresc ; 34(2): 775-786, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37358757

RESUMO

Herein, we have prepared a 5,10,15,20-Tetrakis(4-hydroxyphenyl) porphyrin (P) which acts as a probe for selective and sensitive detection of Bi3+ ions. Probe P was obtained by reacting pyrrole with 4-hydroxyl benzaldehyde and characterized by NMR, IR, and ESI-MS. All photo-physical studies of P were tested in DMSO:H2O (8:2, v/v) media by spectrophotometry and spectrofluorometry respectively. The selectivity of P was tested with different metal ions in solution as well as in the solid phase, only Bi3+ showed red fluorescence quenching while with other metal ions, no such effect was observed. The Job's plot unveiled the 1:1 stoichiometric binding ratio of the probe with Bi3+ and anticipated association constant of 3.4 ×105 M-1, whereas the Stern-Volmer quenching constant was noticed to be 5.6 ×105 M-1. Probe P could detect Bi3+ down to 27 nM by spectrofluorometric. The binding mechanism of P with Bi3+ was well supported with NMR, mass, and DFT studies. Further, the P was applied for the quantitative determination of Bi3+ in various water samples and the biocompatibility of P was examined using neuro 2A (N2a) cells. Overall, probe P proves promising for the detection of Bi3+ in the semi-aqueous phase and it is the first report as a colorimetric and fluorogenic probe.

9.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504015

RESUMO

Rhythmic activity in pacemaker cells, as in the sino-atrial node in the heart, depends on the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. As in depolarization-activated K+ channels, the fourth transmembrane segment S4 functions as the voltage sensor in hyperpolarization-activated HCN channels. But how the inward movement of S4 in HCN channels at hyperpolarized voltages couples to channel opening is not understood. Using voltage clamp fluorometry, we found here that S4 in HCN channels moves in two steps in response to hyperpolarizations and that the second S4 step correlates with gate opening. We found a mutation in sea urchin HCN channels that separate the two S4 steps in voltage dependence. The E356A mutation in S4 shifts the main S4 movement to positive voltages, but channel opening remains at negative voltages. In addition, E356A reveals a second S4 movement at negative voltages that correlates with gate opening. Cysteine accessibility and molecular models suggest that the second S4 movement opens up an intracellular crevice between S4 and S5 that would allow radial movement of the intracellular ends of S5 and S6 to open HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Relógios Biológicos/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Ouriços-do-Mar/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597302

RESUMO

Cellular survival requires the ion gradients built by the Na+/K+ pump, an ATPase that alternates between two major conformations (E1 and E2). Here we use state-specific engineered-disulfide cross-linking to demonstrate that transmembrane segment 2 (M2) of the pump's α-subunit moves in directions that are inconsistent with distances observed in existing crystal structures of the Na+/K+ pump in E1 and E2. We characterize this movement with voltage-clamp fluorometry in single-cysteine mutants. Most mutants in the M1-M2 loop produced state-dependent fluorescence changes upon labeling with tetramethylrhodamine-6-maleimide (TMRM), which were due to quenching by multiple endogenous tryptophans. To avoid complications arising from multiple potential quenchers, we analyzed quenching of TMRM conjugated to R977C (in the static M9-M10 loop) by tryptophans introduced, one at a time, in M1-M2. This approach showed that tryptophans introduced in M2 quench TMRM only in E2, with D126W and L130W on the same helix producing the largest fluorescence changes. These observations indicate that M2 moves outward as Na+ is deoccluded from the E1 conformation, a mechanism consistent with cross-linking results and with proposals for other P-type 2 ATPases.


Assuntos
Cisteína/química , Oócitos/fisiologia , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Animais , Cisteína/genética , Cisteína/metabolismo , Fluorometria , Oócitos/citologia , Conformação Proteica , Domínios Proteicos , ATPase Trocadora de Sódio-Potássio/genética , Xenopus laevis
11.
Mikrochim Acta ; 191(6): 304, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710810

RESUMO

Dual-emissive fluorescence probes were designed by integrating porphyrin into the frameworks of UiO-66 for ratiometric fluorescence sensing of amoxicillin (AMX). Porphyrin integrated UiO-66 showed dual emission in the blue and red region. AMX resulted in the quenching of blue fluorescence component, attributable to the charge neutralization and hydrogen bonds induced energy transfer. AMX was detected using (F438/F654) as output signals. Two linear relationships were observed (from 10 to 1000 nM and 1 to 100 µM), with a limit of detection of 27 nM. The porphyrin integrated UiO-66 probe was used to detect AMX in practical samples. This work widens the road for the development of dual/multiple emissive fluorescence sensors for analytical applications, providing materials and theoretical supporting for food, environmental, and human safety.


Assuntos
Amoxicilina , Antibacterianos , Corantes Fluorescentes , Leite , Porfirinas , Espectrometria de Fluorescência , Leite/química , Porfirinas/química , Antibacterianos/análise , Antibacterianos/química , Amoxicilina/análise , Amoxicilina/química , Corantes Fluorescentes/química , Animais , Espectrometria de Fluorescência/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Resíduos de Drogas/análise , Contaminação de Alimentos/análise
12.
Mikrochim Acta ; 191(7): 411, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900245

RESUMO

Ratiometric fluorescence and colorimetric strategies for detecting activity of butyrylcholinesterase (BChE) in human serum were developed by using g-C3N4 nanosheets, silver ion (Ag+) and o-phenylenediamine (OPD) as chromogenic agents. The oxidation-reduction reaction of OPD and Ag+ generates 2,3-diaminophenazine (oxOPD). Under exciation at 370 nm, g-C3N4 nanosheets and oxOPD emit fluorescence at 440 nm (F440) and 560 nm (F560), respectively. Additionally, oxOPD exhibits quenching ability towards g-C3N4 nanosheets via photoinduced electron transfer (PET) process. Thiocholine (TCh), as a product of BChE-catalyzed hydrolysis reaction of butylthiocholine iodide (BTCh), can coordinate with Ag+ intensively, and consequently diminish the amount of free Ag+ in the testing system. Less amount of free Ag+ leads to less production of oxOPD, resulting in less fluorescence quenching towards g-C3N4 nanosheets as well as less fluorescence emission of oxOPD. Therefore, by using g-C3N4 nanosheets and oxOPD as fluorescence indicators, the intensity ratio of their fluorescence (F440/F560) was calculated and employed to evaluate the activity of BChE. Similarly, the color variation of oxOPD indicated by the absorbance at 420 nm (ΔA420) was monitored for the same purpose. These strategies were validated to be sensitive and selective for detecting BChE activity in human serum, with limits of detection (LODs) of 0.1 U L-1 for ratiometric fluorescence mode and 0.7 U L-1 for colorimetric mode.


Assuntos
Butirilcolinesterase , Colorimetria , Nanoestruturas , Fenilenodiaminas , Prata , Espectrometria de Fluorescência , Humanos , Colorimetria/métodos , Prata/química , Fenilenodiaminas/química , Butirilcolinesterase/sangue , Butirilcolinesterase/química , Espectrometria de Fluorescência/métodos , Nanoestruturas/química , Compostos de Nitrogênio/química , Limite de Detecção , Nitrilas/química , Grafite , Fenazinas
13.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673895

RESUMO

Voltage-gated potassium (Kv) channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels share similar structures but have opposite gating polarity. Kv channels have a strong coupling (>109) between the voltage sensor (S4) and the activation gate: when S4s are activated, the gate is open to >80% but, when S4s are deactivated, the gate is open <10-9 of the time. Using noise analysis, we show that the coupling between S4 and the gate is <200 in HCN channels. In addition, using voltage clamp fluorometry, locking the gate open in a Kv channel drastically altered the energetics of S4 movement. In contrast, locking the gate open or decreasing the coupling between S4 and the gate in HCN channels had only minor effects on the energetics of S4 movement, consistent with a weak coupling between S4 and the gate. We propose that this loose coupling is a prerequisite for the reversed voltage gating in HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Animais , Técnicas de Patch-Clamp , Humanos
14.
J Physiol ; 601(23): 5367-5389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883018

RESUMO

Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV ß1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV ß1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.


Assuntos
Epilepsia , Humanos , Criança , Epilepsia/genética , Neurônios/fisiologia , Transdução de Sinais , Membrana Celular , Fenótipo , Canal de Potássio Kv1.2/genética
15.
Proc Biol Sci ; 290(2008): 20231329, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788706

RESUMO

Red coralline algae are the deepest living macroalgae, capable of creating spatially complex reefs from the intertidal to 100+ m depth with global ecological and biogeochemical significance. How these algae maintain photosynthetic function under increasingly limiting light intensity and spectral availability is key to explaining their large depth distribution. Here, we investigated the photo- and chromatic acclimation and morphological change of free-living red coralline algae towards mesophotic depths in the Fernando do Noronha archipelago, Brazil. From 13 to 86 m depth, thalli tended to become smaller and less complex. We observed a dominance of the photo-acclimatory response, characterized by an increase in photosynthetic efficiency and a decrease in maximum electron transport rate. Chromatic acclimation was generally stable across the euphotic-mesophotic transition with no clear depth trend. Taxonomic comparisons suggest these photosynthetic strategies are conserved to at least the Order level. Light saturation necessitated the use of photoprotection to 65 m depth, while optimal light levels were met at 86 m. Changes to the light environment (e.g. reduced water clarity) due to human activities therefore places these mesophotic algae at risk of light limitation, necessitating the importance of maintaining good water quality for the conservation and protection of mesophotic habitats.


Assuntos
Antozoários , Rodófitas , Humanos , Animais , Recifes de Corais , Ecossistema , Fotossíntese , Aclimatação , Antozoários/fisiologia
16.
Photosynth Res ; 155(2): 177-190, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36463555

RESUMO

The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis and represents a major cause of oxidative stress in phototrophs, having detrimental effects on the photosynthetic apparatus, limiting cell growth, and productivity. Several methods have been developed for the quantification of cellular ROS, however, most are invasive, requiring the destruction of the sample. Here, we present a new methodology that allows the concurrent quantification of ROS and photosynthetic activity, using the fluorochrome dichlorofluorescein (DCF) and in vivo chlorophyll a fluorescence, respectively. Both types of fluorescence were measured using an imaging Pulse Amplitude Modulation (PAM) fluorometer, modified by adding a UVA-excitation light source (385 nm) and a green bandpass emission filter (530 nm) to enable the sequential capture of red chlorophyll fluorescence and green DCF fluorescence in the same sample. The method was established on Phaeodactylum tricornutum Bohlin, an important marine model diatom species, by determining protocol conditions that permitted the detection of ROS without impacting photosynthetic activity. The utility of the method was validated by quantifying the effects of two herbicides (DCMU and methyl viologen) on the photosynthetic activity and ROS production in P. tricornutum and of light acclimation state in Navicula cf. recens Lange-Bertalot, a common benthic diatom. The developed method is rapid and non-destructive, allowing for the high-throughput screening of multiple samples over time.


Assuntos
Diatomáceas , Microalgas , Clorofila/metabolismo , Clorofila A/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microalgas/metabolismo , Fotossíntese/fisiologia , Estresse Oxidativo , Diatomáceas/metabolismo
17.
J Fluoresc ; 33(2): 721-730, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36508000

RESUMO

This protocol describes a detailed fluorometric method for measuring peroxiredoxin (Prx) enzyme activity in vitro. Peroxide dissociation is the rate-limiting step in the Prx-controlled enzymatic reaction. To prevent interference by the catalase enzyme, we developed a peroxiredoxin assay that measures Prx activity using the substrate tert-Butyl hydroperoxide (t-BOOH). Prx enzyme activity is measured by incubating the enzymatic substrates 1,4-dithio-DL-threitol (DTT) and t-BOOH in a suitable buffer at 37 °C for 10 min in the presence of the desired volume of Prx enzyme. Next, the reagent N-(9-Acridinyl)maleimide (NAM) is used to stop the enzymatic reaction and form a fluorescent end product. Finally, Prx activity is measured by thiol fluorometry using a Box-Behnken design to optimize reaction conditions. This novel protocol was validated by evaluating Prx activity in matched samples against a reference assay. The correlation coefficient between our protocol and the reference assay was 0.9933, demonstrating its precision compared with existing methods. The NAM-Prx protocol instead uses t-BOOH as a substrate to measure Prx activity. Because catalase does not participate in the dissociation of t-BOOH, this approach does not require sodium azide. Furthermore, the method eliminates the need for concentrated acids to terminate the Prx enzymatic reaction since the NAM reagent can inhibit the enzymatic reaction regulated by the Prx enzyme.


Assuntos
Antioxidantes , Peroxirredoxinas , Catalase , Peróxidos , Compostos de Sulfidrila
18.
J Phycol ; 59(1): 236-248, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461636

RESUMO

Seasonally slowly melting mountain snowfields are populated by extremophilic microalgae. In alpine habitats, high-light sensitive, green phytoflagellates are usually observed in subsurface layers deeper in the snowpack under dim conditions, while robust orange to reddish cyst stages can be seen exposed on the surface. In this study, uncommon surface green snow was investigated in the High Tatra Mountains (Slovakia). The monospecific community found in the green surface bloom consisted of vegetative Chloromonas cells (Volvocales, Chlorophyta). Molecular data demonstrated that the field sample and the strain isolated and established from the bloom were conspecific, and they represent a new species, Chloromonas kaweckae sp. nov., which is described based on the morphology of the vegetative cells and asexual reproduction and on molecular analyses of the strain. Cells of C. kaweckae accumulated approximately 50% polyunsaturated fatty acids, which is advantageous at low temperatures. In addition, this new species performed active photosynthesis at temperatures close to the freezing point showed a light compensation point of 126 ± 22 µmol photons · m-2  · s-1 and some signs of photoinhibition at irradiances greater than 600 µmol photons · m-2  · s-1 . These data indicate that the photosynthetic apparatus of C. kaweckae could be regarded as adapted to relatively high light intensities, otherwise unusual for most flagellate stages of snow algae.


Assuntos
Clorofíceas , Clorófitas , Eslováquia , Clorófitas/fisiologia , Fotossíntese/fisiologia , Temperatura Baixa
19.
Appl Microbiol Biotechnol ; 107(23): 7313-7330, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741936

RESUMO

As lipogenic yeasts are becoming increasingly harnessed as biofactories of oleochemicals, the availability of efficient protocols for the determination and optimization of lipid titers in these organisms is necessary. In this study, we optimized a quick, reliable, and high-throughput Nile red-based lipid fluorometry protocol adapted for oleaginous yeasts and validated it using different approaches, the most important of which is using gas chromatography coupled to flame ionization detection and mass spectrometry. This protocol was applied in the optimization of the concentrations of ammonium chloride and glycerol for attaining highest lipid titers in Rhodotorula toruloides NRRL Y-6987 and Yarrowia lipolytica W29 using response surface central composite design (CCD). Results of this optimization showed that the optimal concentration of ammonium chloride and glycerol is 4 and 123 g/L achieving a C/N ratio of 57 for R. toruloides, whereas for Y. lipolytica, concentrations are 4 and 139 g/L with a C/N ratio of 61 for Y. lipolytica. Outside the C/N of 33 to 74 and 45 to 75, respectively, for R. toruloides and Y. lipolytica, lipid productions decrease by more than 10%. The developed regression models and response surface plots show the importance of the careful selection of C/N ratio to attain maximal lipid production. KEY POINTS: • Nile red (NR)-based lipid fluorometry is efficient, rapid, cheap, high-throughput. • NR-based lipid fluorometry can be well used for large-scale experiments like DoE. • Optimal molar C/N ratio for maximum lipid production in lipogenic yeasts is ~60.


Assuntos
Lipídeos , Yarrowia , Glicerol , Cloreto de Amônio , Biomassa , Cromatografia Gasosa-Espectrometria de Massas , Leveduras/química
20.
Biosci Biotechnol Biochem ; 87(11): 1310-1315, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37580155

RESUMO

The constitutive androstane receptor (CAR) regulates enzyme transcription related to drug metabolism; therefore, natural compound clarification in food that interacts with CAR is significant for drug development. We revealed that 13-epimanool, which is a compound found in the common sage, is bound to hCAR based on differential scanning fluorometry (DSF) measurements using recombinant hCAR protein. Similar labdane diterpenoids were examined, which revealed that manool and sclareol, which were both natural compounds contained in herbs, are bound to hCAR. They exhibited different effects for CAR activity in the luciferase assay despite the structural similarity. Manool was a partial agonist, 13-epimanool was a weak partial agonist, and sclareol was an antagonist. The activity of hCAR may be regulated by slight differences in the bound compound.


Assuntos
Receptor Constitutivo de Androstano , Diterpenos , Humanos , Receptores Citoplasmáticos e Nucleares , Diterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA