Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Semin Diagn Pathol ; 41(3): 119-124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242750

RESUMO

Birt-Hogg-Dubé syndrome (BHD) represents a rare autosomal dominant tumor predisposition syndrome characterized by skin lesions, lung cysts, and renal tumors. The predominant histological subtypes of BHD-related renal tumors include hybrid oncocytoma-chromophobe tumors, oncocytomas, and chromophobe renal cell carcinomas, all exhibiting eosinophilic/oncocytic features. Immunohistochemistry staining for KIT (CD117) and CK7 exhibits variability in these tumor types. Germline mutations in FLCN have been consistently identified. Generally, patients with BHD demonstrate a favorable prognosis with minimal metastatic potential. Nonetheless, the comprehensive elucidation of pathological characteristics of BHD remains incomplete, particularly in BHD-associated renal tumors that deviate from the previously identified subtypes, thereby complicating the differential diagnosis. In this review, we provide a comprehensive overview of BHD encompassing epidemiology, clinical manifestations, genetic and molecular pathogenesis, as well as clinical diagnostic modalities. Emphasis is placed on clinicopathological features, specifically focusing on BHD-associated renal tumors. Collectively, this review aims to present the latest insights into BHD which benefits in the early detection, therapeutic decision-making, and prognosis prediction in BHD cases, and deepen the understanding of sporadic renal tumors.


Assuntos
Síndrome de Birt-Hogg-Dubé , Neoplasias Renais , Síndrome de Birt-Hogg-Dubé/patologia , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/diagnóstico , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/genética , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Proto-Oncogênicas
2.
BMC Pulm Med ; 23(1): 181, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221571

RESUMO

BACKGROUND: Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant disorder characterized by fibrofolliculomas, renal tumors, pulmonary cysts, and recurrent pneumothorax. Pulmonary cysts are the cause of recurrent pneumothorax, which is one of the most important factors influencing patient quality of life. It is unknown whether pulmonary cysts progress with time or influence pulmonary function in patients with BHD syndrome. This study investigated whether pulmonary cysts progress during long-term follow-up (FU) by using thoracic computed tomography (CT) and whether pulmonary function declines during FU. We also evaluated risk factors for pneumothorax in patients with BHD during FU. METHODS: Our retrospective cohort included 43 patients with BHD (25 women; mean age, 54.2 ± 11.7 years). We evaluated whether cysts progress by visual assessment and quantitative volume analysis using initial and serial thoracic CT. The visual assessment included the size, location, number, shape, distribution, presence of a visible wall, fissural or subpleural cysts, and air-cuff signs. In CT data obtained from a 1-mm section from 17 patients, the quantitative assessment was performed by measuring the volume of the low attenuation area using in-house software. We evaluated whether the pulmonary function declined with time on serial pulmonary function tests (PFT). Risk factors for pneumothorax were analyzed using multiple regression analysis. RESULTS: On visual assessment, the largest cyst in the right lung showed a significant interval increase in size (1.0 mm/year, p = 0.0015; 95% confidence interval [CI], 0.42-1.64) between the initial and final CT, and the largest cyst in the left lung also showed significant interval increase in size (0.8 mm/year, p < 0.001, 95% CI; -0.49-1.09). On quantitative assessment, cysts had a tendency to gradually increase in size. In 33 patients with available PFT data, FEV1pred%, FEV1/FVC, and VCpred% showed a statistically significant decrease with time (p < 0.0001 for each). A family history of pneumothorax was a risk factor for the development of pneumothorax. CONCLUSIONS: The size of pulmonary cysts progressed over time in longitudinal follow-up thoracic CT in patients with BHD, and pulmonary function had slightly deteriorated by longitudinal follow-up PFT.


Assuntos
Síndrome de Birt-Hogg-Dubé , Cistos , Pneumotórax , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Qualidade de Vida , Tomografia
3.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457153

RESUMO

Anisakis simplex s. s. is a parasitic nematode of marine mammals and causative agent of anisakiasis in humans. The cuticle and intestine of the larvae are the tissues most responsible for direct and indirect contact, respectively, of the parasite with the host. At the L4 larval stage, tissues, such as the cuticle and intestine, are fully developed and functional, in contrast to the L3 stage. As such, this work provides for the first time the tissue-specific proteome of A. simplex s. s. larvae in the L4 stage. Statistical analysis (FC ≥ 2; p-value ≤ 0.01) showed that 107 proteins were differentially regulated (DRPs) between the cuticle and the rest of the larval body. In the comparison between the intestine and the rest of the larval body at the L4 stage, 123 proteins were identified as DRPs. Comparison of the individual tissues examined revealed a total of 272 DRPs, with 133 proteins more abundant in the cuticle and 139 proteins more abundant in the intestine. Detailed functional analysis of the identified proteins was performed using bioinformatics tools. Glycolysis and the tricarboxylic acid cycle were the most enriched metabolic pathways by cuticular and intestinal proteins, respectively, in the L4 stage of A. simplex s. s. The presence of two proteins, folliculin (FLCN) and oxoglutarate dehydrogenase (OGDH), was confirmed by Western blot, and their tertiary structure was predicted and compared with other species. In addition, host-pathogen interactions were identified, and potential new allergens were predicted. The result of this manuscript shows the largest number of protein identifications to our knowledge using proteomics tools for different tissues of L4 larvae of A. simplex s. s. The identified tissue-specific proteins could serve as targets for new drugs against anisakiasis.


Assuntos
Anisaquíase , Anisakis , Animais , Anisaquíase/parasitologia , Anisakis/química , Anisakis/metabolismo , Metabolismo dos Carboidratos , Humanos , Larva/metabolismo , Mamíferos/metabolismo , Proteoma/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924874

RESUMO

Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Lisossomos/metabolismo , Renovação Mitocondrial , Anaerobiose , Animais , Diferenciação Celular , Estrona/metabolismo , Glicólise , Humanos , Tamanho Mitocondrial , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
5.
Cancer Sci ; 111(1): 15-22, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31777168

RESUMO

Birt-Hogg-Dubé (BHD) syndrome is associated with the development of hereditary renal cell carcinoma (RCC) and is caused by a germline mutation in the folliculin gene. Most cases of BHD syndrome-associated RCC (BHD-RCC) are less aggressive than sporadic clear cell RCC and multifocal. Therefore, it is critical to distinguish BHD-RCC from its sporadic counterparts to identify and monitor affected families and to preserve renal function for as long as possible. The World Health Organization/International Society of Urological Pathology consensus classification defined distinct entities for certain hereditary RCC; however, BHD-RCC was not included in this classification. Although the clinical features and molecular mechanisms of BHD-RCC have been investigated intensively over the last two decades, pathologists and urologists occasionally face difficulties in the diagnosis of BHD-RCC that require genetic testing. Affected patients usually have miscellaneous benign disorders that often precede renal carcinogenesis. In the present review, we summarize the current understanding of the histopathological features of BHD-RCC based on our epidemiological studies of Japanese families and a literature review. Pathological diagnostic clues and differential diagnosis of BHD-RCC from other hereditary RCC are also briefly discussed.


Assuntos
Síndrome de Birt-Hogg-Dubé/diagnóstico , Síndrome de Birt-Hogg-Dubé/patologia , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Animais , Diagnóstico Diferencial , Humanos
6.
FASEB J ; 33(11): 12374-12391, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31404503

RESUMO

AMPK is a central regulator of energy homeostasis. AMPK not only elicits acute metabolic responses but also promotes metabolic reprogramming and adaptations in the long-term through regulation of specific transcription factors and coactivators. We performed a whole-genome transcriptome profiling in wild-type (WT) and AMPK-deficient mouse embryonic fibroblasts (MEFs) and primary hepatocytes that had been treated with 2 distinct classes of small-molecule AMPK activators. We identified unique compound-dependent gene expression signatures and several AMPK-regulated genes, including folliculin (Flcn), which encodes the tumor suppressor FLCN. Bioinformatics analysis highlighted the lysosomal pathway and the associated transcription factor EB (TFEB) as a key transcriptional mediator responsible for AMPK responses. AMPK-induced Flcn expression was abolished in MEFs lacking TFEB and transcription factor E3, 2 transcription factors with partially redundant function; additionally, the promoter activity of Flcn was profoundly reduced when its putative TFEB-binding site was mutated. The AMPK-TFEB-FLCN axis is conserved across species; swimming exercise in WT zebrafish induced Flcn expression in muscle, which was significantly reduced in AMPK-deficient zebrafish. Mechanistically, we have found that AMPK promotes dephosphorylation and nuclear localization of TFEB independently of mammalian target of rapamycin activity. Collectively, we identified the novel AMPK-TFEB-FLCN axis, which may function as a key cascade for cellular and metabolic adaptations.-Collodet, C., Foretz, M., Deak, M., Bultot, L., Metairon, S., Viollet, B., Lefebvre, G., Raymond, F., Parisi, A., Civiletto, G., Gut, P., Descombes, P., Sakamoto, K. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Transporte Ativo do Núcleo Celular , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Camundongos , Fosforilação , Ribonucleotídeos/farmacologia , Peixe-Zebra
8.
Semin Cell Dev Biol ; 52: 47-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26877139

RESUMO

Loss-of-function mutations in the folliculin gene (FLCN) on chromosome 17p cause Birt-Hogg-Dube syndrome (BHD), which is associated with cystic lung disease. The risk of lung collapse (pneumothorax) in BHD patients is 50-fold higher than in the general population. The cystic lung disease in BHD is distinctive because the cysts tend to be basilar, subpleural and lentiform, differentiating BHD from most other cystic lung diseases. Recently, major advances in elucidating the primary functions of the folliculin protein have been made, including roles in mTOR and AMPK signaling via the interaction of FLCN with FNIP1/2, and cell-cell adhesion via the physical interaction of FLCN with plakophilin 4 (PKP4), an armadillo-repeat containing protein that interacts with E-cadherin and is a component of the adherens junctions. In addition, in just the last three years, the pulmonary impact of FLCN deficiency has been examined for the first time. In mouse models, evidence has emerged that AMPK signaling and cell-cell adhesion are involved in alveolar enlargement. In addition, the pathologic features of human BHD cysts have been recently comprehensively characterized. The "stretch hypothesis" proposes that cysts in BHD arise because of fundamental defects in cell-cell adhesion, leading to repeated respiration-induced physical stretch-induced stress and, over time, expansion of alveolar spaces particularly in regions of the lung with larger changes in alveolar volume and at weaker "anchor points" to the pleura. This hypothesis ties together many of the new data from cellular and mouse models of BHD and from the human pathologic studies. Critical questions remain. These include whether the consequences of stretch-induced cyst formation arise through a destructive/inflammatory program or a proliferative program (or both), whether cyst initiation involves a "second hit" genetic event inactivating the remaining wild-type copy of FLCN (as is known to occur in BHD-associated renal cell carcinomas), and whether cyst initiation involves exclusively the epithelial compartment versus an interaction between the epithelium and mesenchyme. Ultimately, understanding the mechanisms of cystic lung disease in BHD may help to elucidate the pathogenesis of primary spontaneous pneumothorax, with more than 20,000 cases reported annually in the United States alone.


Assuntos
Síndrome de Birt-Hogg-Dubé/complicações , Cistos/etiologia , Pneumopatias/etiologia , Pneumotórax/etiologia , Animais , Síndrome de Birt-Hogg-Dubé/patologia , Cistos/patologia , Humanos , Pneumopatias/patologia , Camundongos , Pneumotórax/patologia
9.
EMBO Rep ; 17(6): 823-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27113757

RESUMO

The spatial distribution of lysosomes is important for their function and is, in part, controlled by cellular nutrient status. Here, we show that the lysosome associated Birt-Hoge-Dubé (BHD) syndrome renal tumour suppressor folliculin (FLCN) regulates this process. FLCN promotes the peri-nuclear clustering of lysosomes following serum and amino acid withdrawal and is supported by the predominantly Golgi-associated small GTPase Rab34. Rab34-positive peri-nuclear membranes contact lysosomes and cause a reduction in lysosome motility and knockdown of FLCN inhibits Rab34-induced peri-nuclear lysosome clustering. FLCN interacts directly via its C-terminal DENN domain with the Rab34 effector RILP Using purified recombinant proteins, we show that the FLCN-DENN domain does not act as a GEF for Rab34, but rather, loads active Rab34 onto RILP We propose a model whereby starvation-induced FLCN association with lysosomes drives the formation of contact sites between lysosomes and Rab34-positive peri-nuclear membranes that restrict lysosome motility and thus promote their retention in this region of the cell.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Estrona/farmacologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Proteínas Nucleares , Ligação Proteica/efeitos dos fármacos , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(2): 424-9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548157

RESUMO

Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.


Assuntos
Proteínas de Transporte/fisiologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Lenta/fisiologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Complexos Multiproteicos/metabolismo , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Distrofia Muscular de Duchenne/genética , Mioglobina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(13): E1624-31, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775561

RESUMO

Folliculin (FLCN)-interacting proteins 1 and 2 (FNIP1, FNIP2) are homologous binding partners of FLCN, a tumor suppressor for kidney cancer. Recent studies have revealed potential functions for Flcn in kidney; however, kidney-specific functions for Fnip1 and Fnip2 are unknown. Here we demonstrate that Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. We observed no detectable phenotype in Fnip2 knockout mice, whereas Fnip1 deficiency produced phenotypes similar to those seen in Flcn-deficient mice in multiple organs, but not in kidneys. We found that absolute Fnip2 mRNA copy number was low relative to Fnip1 in organs that showed phenotypes under Fnip1 deficiency but was comparable to Fnip1 mRNA copy number in mouse kidney. Strikingly, kidney-targeted Fnip1/Fnip2 double inactivation produced enlarged polycystic kidneys, as was previously reported in Flcn-deficient kidneys. Kidney-specific Flcn inactivation did not further augment kidney size or cystic histology of Fnip1/Fnip2 double-deficient kidneys, suggesting pathways dysregulated in Flcn-deficient kidneys and Fnip1/Fnip2 double-deficient kidneys are convergent. Heterozygous Fnip1/homozygous Fnip2 double-knockout mice developed kidney cancer at 24 mo of age, analogous to the heterozygous Flcn knockout mouse model, further supporting the concept that Fnip1 and Fnip2 are essential for the tumor-suppressive function of Flcn and that kidney tumorigenesis in human Birt-Hogg-Dubé syndrome may be triggered by loss of interactions among Flcn, Fnip1, and Fnip2. Our findings uncover important roles for Fnip1 and Fnip2 in kidney tumor suppression and may provide molecular targets for the development of novel therapeutics for kidney cancer.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Alelos , Animais , Proteínas Reguladoras de Apoptose/genética , Síndrome de Birt-Hogg-Dubé/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Feminino , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Doenças Renais Policísticas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
12.
J Biol Chem ; 291(22): 11689-97, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27072130

RESUMO

Folliculin (FLCN) is the tumor suppressor associated with Birt-Hogg-Dubé (BHD) syndrome that predisposes patients to incident of hamartomas and cysts in multiple organs. Its inactivation causes deregulation in the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. However, the underlying mechanism is poorly defined. In this study, we show that FLCN is a ciliary protein that functions through primary cilia to regulate mTORC1. In response to flow stress, FLCN associates with LKB1 and recruits the kinase to primary cilia for activation of AMPK resided at basal bodies, which causes mTORC1 down-regulation. In cells depleted of FLCN, LKB1 fails to accumulate in primary cilia and AMPK at the basal bodies remains inactive, thus nullifying the inhibitory effect of flow stress on mTORC1 activity. Our results demonstrate that FLCN is part of a flow sensory mechanism that regulates mTORC1 through primary cilia.


Assuntos
Cílios/fisiologia , Regulação da Expressão Gênica , Cinesinas/metabolismo , Complexos Multiproteicos/genética , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Supressoras de Tumor/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Western Blotting , Células Cultivadas , Genes Supressores de Tumor , Humanos , Imunoprecipitação , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética
13.
BMC Med Genet ; 18(1): 53, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28499369

RESUMO

BACKGROUND: Renal cell carcinoma is among the most prevalent malignancies. It is generally sporadic. However, genetic studies of rare familial forms have led to the identification of mutations in causative genes such as VHL and FLCN. Mutations in the FLCN gene are the cause of Birt-Hogg-Dubé syndrome, a rare tumor syndrome which is characterized by the combination of renal cell carcinoma, pneumothorax and skin tumors. METHODS: Using Sanger sequencing we identify a heterozygous splice-site mutation in FLCN in lymphocyte DNA of a patient suffering from renal cell carcinoma. Furthermore, both tumor DNA and DNA from a metastasis are analyzed regarding this mutation. The pathogenic effect of the sequence alteration is confirmed by minigene assays and the biochemical consequences on the protein are examined using TALEN-mediated transgenesis in cultured cells. RESULTS: Here we describe an FLCN mutation in a 55-year-old patient who presented himself with progressive weight loss, bilateral kidney cysts and renal tumors. He and members of his family had a history of recurrent pneumothorax during the last few decades. Histology after tumor nephrectomy showed a mixed kidney cancer consisting of elements of a chromophobe renal cell carcinoma and dedifferentiated small cell carcinoma component. Subsequent FLCN sequencing identified an intronic c.1177-5_-3delCTC alteration that most likely affected the correct splicing of exon 11 of the FLCN gene. We demonstrate skipping of exon 11 to be the consequence of this mutation leading to a shift in the reading frame and the insertion of a premature stop codon. Interestingly, the truncated protein was still expressed both in cell culture and in tumor tissue, though it was strongly destabilized and its subcellular localization differed from wild-type FLCN. Both, altered protein stability and subcellular localization could be partly reversed by blocking proteasomal and lysosomal degradation. CONCLUSIONS: Identification of disease-causing mutations in BHD syndrome requires the analysis of intronic sequences. However, biochemical validation of the consecutive alterations of the resulting protein is especially important in these cases. Functional characterization of the disease-causing mutations in BHD syndrome may guide further research for the development of novel diagnostic and therapeutic strategies.


Assuntos
Carcinoma de Células Renais/genética , Genes Supressores de Tumor , Neoplasias Renais/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Splicing de RNA , Proteínas Supressoras de Tumor/genética , Carcinoma de Células Renais/diagnóstico por imagem , Humanos , Neoplasias Renais/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
14.
Stem Cells ; 34(4): 1068-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27095138

RESUMO

Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days. HSC that lack Flcn fail to reconstitute the hematopoietic compartment in recipient mice, demonstrating a cell-autonomous requirement for Flcn in HSC maintenance. BM cells showed increased phosphorylation of Akt and mTorc1, and extramedullary hematopoiesis was significantly reduced by treating mice with rapamycin in vivo, suggesting that the mTorc1 pathway was activated by loss of Flcn expression in hematopoietic cells in vivo. Tfe3 was activated and preferentially localized to the nucleus of Flcn knockout (KO) HSPCs. Tfe3 overexpression in HSPCs impaired long-term hematopoietic reconstitution in vivo, recapitulating the Flcn KO phenotype, and supporting the notion that abnormal activation of Tfe3 contributes to the Flcn KO phenotype. Flcn KO mice develop an acute histiocytic hyperplasia in multiple organs, suggesting a novel function for Flcn in macrophage development. Thus, Flcn is intrinsically required to maintain adult HSC quiescence and homeostasis, and Flcn loss leads to BM failure and mortality in mice.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Diferenciação Celular/genética , Estrona/genética , Células-Tronco Hematopoéticas/patologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células da Medula Óssea/patologia , Linhagem da Célula/genética , Proliferação de Células/genética , Desenvolvimento Embrionário/genética , Células-Tronco Hematopoéticas/metabolismo , Homeostase/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout
15.
BMC Dev Biol ; 16(1): 23, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27391801

RESUMO

BACKGROUND: Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD. As a first approach to developing a vertebrate model for BHD we aimed to identify the temporal and spatial expression of flcn transcripts in the developing zebrafish embryo. To gain insights into the function of flcn in a whole organism system we generated a loss of function model of flcn by the use of morpholino knockdown in zebrafish. RESULTS: flcn is expressed broadly and upregulated in the fin bud, somites, eye and proliferative regions of the brain of the Long-pec stage zebrafish embryos. Together with knockdown phenotypes, expression analysis suggest involvement of flcn in zebrafish embryonic brain development. We have utilised the zFucci system, an in vivo, whole organism cell cycle assay to study the potential role of flcn in brain development. We found that at the 18 somite stage there was a significant drop in cells in the S-M phase of the cell cycle in flcn morpholino injected embryos with a corresponding increase of cells in the G1 phase. This was particularly evident in the brain, retina and somites of the embryo. Timelapse analysis of the head region of flcn morpholino injected and mismatch control embryos shows the temporal dynamics of cell cycle misregulation during development. CONCLUSIONS: In conclusion we show that zebrafish flcn is expressed in a non-uniform manner and is likely required for the maintenance of correct cell cycle regulation during embryonic development. We demonstrate the utilisation of the zFucci system in testing the role of flcn in cell proliferation and suggest a function for flcn in regulating cell proliferation in vertebrate embryonic brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Encéfalo/metabolismo , Ciclo Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Proteínas Proto-Oncogênicas/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Somitos/crescimento & desenvolvimento , Somitos/metabolismo , Imagem com Lapso de Tempo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
16.
BMC Med Genet ; 17(1): 85, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871249

RESUMO

BACKGROUND: Birt-Hogg-Dubé (BHD) syndrome is a rare inherited autosomal genodermatosis and caused by germline mutation of the folliculin (FLCN) gene, a tumor suppressor gene of which protein product is involved in mechanistic target of rapamycin (mTOR) signaling pathway regulating cell growth and metabolism. Clinical manifestations in BHD syndrome is characterized by fibrofolliculomas of the skin, pulmonary cysts with or without spontaneous pneumothorax, and renal neoplasms. There has been no pulmonary neoplasm reported in BHD syndrome, although the condition is due to deleterious sequence variants in a tumor suppressor gene. Here we report, for the first time to our knowledge, a patient with BHD syndrome who was complicated with a clear cell "sugar" tumor (CCST) of the lung, a benign tumor belonging to perivascular epithelioid cell tumors (PEComas) with frequent causative relation to tuberous sclerosis complex 1 (TSC1) or 2 (TSC2) gene. CASE PRESENTATION: In a 38-year-old Asian woman, two well-circumscribed nodules in the left lung and multiple thin-walled, irregularly shaped cysts on the basal and medial area of the lungs were disclosed by chest roentgenogram and computer-assisted tomography (CT) during a preoperative survey for a bilateral faucial tonsillectomy. Analysis of the resected tumor showed large polygonal cells with clear cytoplasm proliferating in a solid pattern. Immunohistochemistry revealed that these tumor cells were positive for microphthalmia-transcription factor, S100, and CD1a but negative for HMB45, indicating that the tumor was a CCST. Genetic testing indicated that the patient had a germline mutation on exon 12 of the FLCN gene, i.e., insertion of 7 nucleotides (CCACCCT) (c.1347_1353dupCCACCCT). Direct sequencing of the FLCN exon 12 using genomic DNA obtained from her microdissected CCST cells clearly revealed loss of the wild-type FLCN sequence, which confirmed complete functional loss of the FLCN gene. On the other hand, no loss of heterozygosity around TCS1- or TSC2-associated genetic region was demonstrated. CONCLUSION: To our knowledge, this is the first report of CCST of the lung in a patient with BHDS, indicating that CCST should be added to the spectrum of pulmonary manifestations of BHDS.


Assuntos
Síndrome de Birt-Hogg-Dubé/genética , Neoplasias Pulmonares/genética , Neoplasias de Células Epitelioides Perivasculares/genética , Adulto , Síndrome de Birt-Hogg-Dubé/patologia , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Éxons , Feminino , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Mutagênese Insercional , Linhagem , Neoplasias de Células Epitelioides Perivasculares/diagnóstico por imagem , Neoplasias de Células Epitelioides Perivasculares/patologia , Proteínas Proto-Oncogênicas/genética , Tomografia Computadorizada por Raios X , Proteínas Supressoras de Tumor/genética
17.
Int J Urol ; 23(3): 204-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26608100

RESUMO

Birt-Hogg-Dubé syndrome is an autosomal dominantly inherited disease that predisposes patients to develop fibrofolliculoma, lung cysts and bilateral multifocal renal tumors, histologically hybrid oncocytic/chromophobe tumors, chromophobe renal cell carcinoma, oncocytoma, papillary renal cell carcinoma and clear cell renal cell carcinoma. The predominant forms of Birt-Hogg-Dubé syndrome-associated renal tumors, hybrid oncocytic/chromophobe tumors and chromophobe renal cell carcinoma are typically less aggressive, and a therapeutic principle for these tumors is a surgical removal with nephron-sparing. The timing of surgery is the most critical element for postoperative renal function, which is one of the important prognostic factors for Birt-Hogg-Dubé syndrome patients. The folliculin gene (FLCN) that is responsible for Birt-Hogg-Dubé syndrome was isolated as a novel tumor suppressor for kidney cancer. Recent studies using murine models for FLCN, a protein encoded by the FLCN gene, and its two binding partners, folliculin-interacting protein 1 (FNIP1) and folliculin-interacting protein 2 (FNIP2), have uncovered important roles for FLCN, FNIP1 and FNIP2 in cell metabolism, which include AMP-activated protein kinase-mediated energy sensing, Ppargc1a-driven mitochondrial oxidative phosphorylation and mTORC1-dependent cell proliferation. Birt-Hogg-Dubé syndrome is a hereditary hamartoma syndrome, which is triggered by metabolic alterations under a functional loss of FLCN/FNIP1/FNIP2 complex, a critical regulator of kidney cell proliferation rate; a mechanistic insight into the FLCN/FNIP1/FNIP2 pathway could provide us a basis for developing new therapeutics for kidney cancer.


Assuntos
Síndrome de Birt-Hogg-Dubé , Neoplasias Renais , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Animais , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Síndrome de Birt-Hogg-Dubé/terapia , Proteínas de Transporte/metabolismo , Técnicas de Inativação de Genes , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Mutação , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Nefrectomia , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Sirolimo/administração & dosagem , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo
18.
Cancer Sci ; 106(3): 315-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25594584

RESUMO

Birt-Hogg-Dubé syndrome (BHD) is an inherited disorder associated with a germline mutation of the folliculin gene (FLCN). The affected families have a high risk for developing multiple renal cell carcinomas (RCC). Diagnostic markers that distinguish between FLCN-related RCC and sporadic RCC have not been investigated, and many patients with undiagnosed BHD fail to receive proper medical care. We investigated the histopathology of 27 RCCs obtained from 18 BHD patients who were diagnosed by genetic testing. Possible somatic mutations of RCC lesions were investigated by DNA sequencing. Western blotting and immunohistochemical staining were used to compare the expression levels of FLCN and glycoprotein non-metastatic B (GPNMB) between FLCN-related RCCs and sporadic renal tumors (n = 62). The expression of GPNMB was also evaluated by quantitative RT-PCR. Histopathological analysis revealed that the most frequent histological type was chromophobe RCC (n = 12), followed by hybrid oncocytic/chromophobe tumor (n = 6). Somatic mutation analysis revealed small intragenic mutations in six cases and loss of heterozygosity in two cases. Western blot and immunostaining analyses revealed that FLCN-related RCCs showed overexpression of GPNMB and underexpression of FLCN, whereas sporadic tumors showed inverted patterns. GPNMB mRNA in FLCN-related RCCs was 23-fold more abundant than in sporadic tumors. The distinctive expression patterns of GPNMB and FLCN might identify patients with RCCs who need further work-up for BHD.


Assuntos
Síndrome de Birt-Hogg-Dubé/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Glicoproteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Sequência de Bases , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas/biossíntese , Análise de Sequência de DNA , Proteínas Supressoras de Tumor/biossíntese
19.
Pathol Int ; 65(3): 126-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25597876

RESUMO

Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder associated with a germline mutation of folliculin (FLCN). The affected families are at a high risk for developing multiple renal cell carcinomas (RCC). Little is known about the immunostaining patterns of mutant FLCN-associated RCCs. We investigated 32 RCCs obtained from 17 BHD patients. The studied tumors included chromophobe RCCs (n = 15), hybrid oncocytic/chromophobe tumors (HOCT) (n = 14) and clear cell RCCs (n = 3). Almost all chromophobe RCCs and HOCTs revealed positive staining for S100A1, Ksp-cadherin and CD82. They stained either focally or diffusely for CK7, and were negative for CA-IX. All clear cell RCCs were positively stained for CA-IX and negative for CK7. These data confirmed that mutant FLCN-associated oncocytic and clear cell RCCs exhibited generally similar immunostaining patterns compared to their sporadic counterparts. Frequent positive staining for S100A1, Ksp-cadherin and CD82 in chromophobe RCCs and HOCTs indicated that these two types were relatively similar rather than distinctively different in their patterns of immunoreactivity. Characteristic peri-nuclear halos and polygonal cells with clear cytoplasm, which often misleads pathologists into the diagnosis of clear cell RCC, should be carefully examined using an immunohistochemical panel including CA-IX, Ksp-cadherin, CD82 and CK7.


Assuntos
Biomarcadores Tumorais/análise , Síndrome de Birt-Hogg-Dubé/complicações , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Adulto , Idoso , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
20.
Histopathology ; 65(1): 100-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24393238

RESUMO

AIMS: To characterize the pathological features of pulmonary cysts, and to elucidate the possible mechanism of cyst formation in the lungs of patients with Birt-Hogg-Dubé syndrome (BHDS), a tumour suppressor gene syndrome, using histological and morphometric analyses. METHODS AND RESULTS: We evaluated 229 lung cysts from 50 patients with BHDS and 117 from 34 patients with primary spontaneous pneumothorax (PSP) for their number, size, location and absence or presence of inflammation. The BHDS cysts abutted on interlobular septa (88.2%) and had intracystic septa (13.6%) or protruding venules (39.5%) without cell proliferation or inflammation. The frequencies of these histological characteristics differed significantly from those seen in the lungs of patients with PSP (P < 0.05). Although the intrapulmonary BHDS cysts were smaller than the subpleural BHDS cysts (P < 0.001), there was no difference in size between them when there was no inflammation. The number of cysts diminished logarithmically and the proportion of cysts with inflammation increased as their individual sizes became greater (P < 0.05). CONCLUSIONS: These results imply that the BHDS cysts are likely to develop in the periacinar region, an anatomically weak site in a primary lobule, where alveoli attach to connective tissue septa. We hypothesize that the BHDS cysts possibly expand in size as the alveolar walls disappear at the alveolar-septal junction, and grow even larger when several cysts fuse.


Assuntos
Síndrome de Birt-Hogg-Dubé/patologia , Cistos/patologia , Pneumopatias/patologia , Adulto , Síndrome de Birt-Hogg-Dubé/genética , Cistos/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA