RESUMO
Ecological interactions are not uniform across time and can vary with environmental conditions. Yet, interactions among species are often measured with short-term controlled experiments whose outcomes can depend greatly on the particular environmental conditions under which they are performed. As an alternative, we use empirical dynamic modeling to estimate species interactions across a wide range of environmental conditions directly from existing long-term monitoring data. In our case study from a southern California kelp forest, we test whether interactions between multiple kelp and sea urchin species can be reliably reconstructed from time-series data and whether those interactions vary predictably in strength and direction across observed fluctuations in temperature, disturbance, and low-frequency oceanographic regimes. We show that environmental context greatly alters the strength and direction of species interactions. In particular, the state of the North Pacific Gyre Oscillation seems to drive the competitive balance between kelp species, asserting bottom-up control on kelp ecosystem dynamics. We show the importance of specifically studying variation in interaction strength, rather than mean interaction outcomes, when trying to understand the dynamics of complex ecosystems. The significant context dependency in species interactions found in this study argues for a greater utilization of long-term data and empirical dynamic modeling in studies of the dynamics of other ecosystems.
Assuntos
Ecossistema , Kelp , Modelos Biológicos , Animais , Florestas , Oceano Pacífico , Ouriços-do-Mar , Temperatura , Movimentos da ÁguaRESUMO
Climatic drivers alone do not adequately explain the regional variation in budburst timing in deciduous forests across Europe. Stand-level factors, such as tree species richness, might affect budburst timing by creating different microclimates under the same site macroclimate. We assessed different phases of the spring phenology (start, midpoint, end, and overall duration of the budburst period) of four important European tree species (Betula pendula, Fagus sylvatica, Quercus robur and Tilia cordata) in monocultures and four-species mixture stands of a common garden tree biodiversity experiment in Belgium (FORBIO) in 2021 and 2022. Microclimatic differences between the stands in terms of bud chilling, temperature forcing, and soil temperature were considerable, with four-species mixtures being generally colder than monocultures in spring, but not in winter. In the colder spring of 2021, at the stand level, the end of the budburst period was advanced, and its overall duration shortened, in the four-species mixtures. At species level, this response was significant for F. sylvatica. In the warmer spring of 2022, advances in spring phenology in four-species stands were observed again in F. sylvatica and, less markedly, in B. pendula but without a general response at the stand level. Q. robur showed specific patterns with delayed budburst start in 2021 in the four-species mixtures and very short budburst duration for all stands in 2022. Phenological differences between monocultures and four-species mixtures were linked to microclimatic differences in light availability rather than in temperature as even comparatively colder microclimates showed an advanced phenology. Compared to weather conditions, tree species richness had a lower impact on budburst timing, but this impact can be of importance for key species like F. sylvatica and colder springs. These results indicate that forest biodiversity can affect budburst phenology, with wider implications, especially for forest- and land surface models.
Assuntos
Temperatura Baixa , Árvores , Árvores/fisiologia , Temperatura , Estações do Ano , Florestas , Folhas de Planta/fisiologiaRESUMO
Climate change will likely increase habitat loss of endemic tree species and drives forest conversion in mountainous forests. Elevation gradients provide the opportunity to predict possible consequences of such changes. While species compositions of various taxa have been investigated along elevation gradients, data on trophic changes in soil-dwelling organisms are scarce. Here, we investigated trophic changes of the Collembola communities along the northern slope of Changbai Mountain, China. We sampled Collembola in primary forests at seven elevations (800-1700 m asl). We measured individual body lengths and bulk stable isotopes on species level. We further categorized Collembola species into life forms. The community-weighted means of Δ15N and Δ13C values as well as minimum Δ15N values and isotopic uniqueness of Collembola communities increased with increasing elevation, while the range of Δ15N values decreased. Maximum and minimum of Δ13C values differed between elevations but showed no linear trend. Further, Δ15N values of Collembola species occurring across all elevations increased with elevation. Changes in Δ15N values with elevation were most pronounced in hemiedaphic species, while Δ13C values increased strongest with elevation in euedaphic species. Δ15N values increased with decreasing body size in hemiedaphic and euedaphic species. Overall, the results suggest that Collembola species functioning as primary decomposers at lower elevations shift towards functioning as secondary decomposers or even predators or scavengers at higher elevation forests. The results further indicate that access to alternative food resources depends on Collembola life form as well as body size and varies between ecosystems.
Assuntos
Ecossistema , Florestas , Árvores , Isótopos de Carbono/análise , Tamanho CorporalRESUMO
Correlation coefficients are widely used to identify and quantify climate signals in proxy archives. Significant relationships between tree-ring chronologies and meteorological measurements are typically applied by dendroclimatologists to distinguish between more or less relevant climate variation for ring formation. While insignificant growth-climate correlations are usually found with cold season months, we argue that weak relationships with high summer temperatures not necessarily disprove their importance for xylogenesis. Here, we use maximum latewood density records from ten treeline sites between northern Scandinavia and southern Spain to demonstrate how monthly growth-climate correlations change from narrow unimodal to wide bimodal seasons when vegetation periods become longer and warmer. Statistically meaningful relationships occur when minimum temperatures exceed 'biological zero' at around 5° C. We conclude that the absence of evidence for statistical significance between tree growth and the warmest summer temperatures at Mediterranean sites is no evidence of absence for the physiological importance of high summer temperatures for ring formation. Since correlation should never be confused with causation, statistical values require mechanistic understanding, and different interpretations are needed for insignificant correlations within and outside the growing season.
Assuntos
Clima , Estações do Ano , Temperatura , Árvores , Árvores/crescimento & desenvolvimento , Espanha , Países Escandinavos e NórdicosRESUMO
Deforestation in the Amazon has resulted in large areas of depleted soils on abandoned pastures and agricultural sites that present a restoration challenge central to protecting biodiversity and ecosystem function in the region. Biochar - charcoal made from waste materials - can improve soil physical, chemical, and biological properties, but the few tropical field trials to date do not give consistent results regarding tree growth. This study presents three years of soil performance and tree growth of a secondary forest shading nontimber forest product (NTFP) plantations of Ocotea quixos (Lauraceae), Myroxylon balsamum (Fabaceae), and their mixture. Open kiln and traditional mound biochars were added at 10 t ha-1 at two sites with contrasting soil types. Biochar additions resulted in pronounced effects on soil properties that varied over time and with depth in the soil profile. Biochar additions generally increased soil organic matter, electrical conductivity, and plant nutrients (in particular K, Ca, and N), but there were interactive effects of NTFP treatments, and stronger responses on the poorer soil type. Biochar amendments resulted in increased tree growth, with a 29 ± 12% increase in aboveground biomass (AGB) on plots amended with kiln biochar and a 23 ± 9% increase in plots with mound biochar compared to controls. Tree species also varied in growth responses to biochar additions, with the largest increases observed in Jaccaranda copaia and Piptocoma discolor. Significant interactions between biochar and NTFP treatments were also seen for tree growth responses, such as Cecropia spp., which only showed increased biomass on mound biochar plots planted with Ocotea quixos. Overall, our results demonstrate a stronger effect of biochar in less favorable soil conditions, and an overriding effect of the legume NTFP in richer soils, and suggest that additions of biochar and legumes are important options to increase productivity and ecological resilience in tropical forest restoration.
Assuntos
Fabaceae , Solo , Solo/química , Ecossistema , Carvão Vegetal/química , Equador , Florestas , Árvores , VerdurasRESUMO
The recent collapse of predatory sunflower sea stars (Pycnopodia helianthoides) owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored Pycnopodia populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins (Strongylocentrotus purpuratus) typical of barrens. Pycnopodia consumed 0.68 S. purpuratus d-1, and our model and sensitivity analysis shows that the magnitude of recent Pycnopodia declines is consistent with urchin proliferation after modest sea urchin recruitment, and even small Pycnopodia recoveries could generally lead to lower densities of sea urchins that are consistent with kelp-urchin coexistence. Pycnopodia seem unable to chemically distinguish starved from fed urchins and indeed have higher predation rates on starved urchins owing to shorter handling times. These results highlight the importance of Pycnopodia in regulating purple sea urchin populations and maintaining healthy kelp forests through top-down control. The recovery of this important predator to densities commonly found prior to SSWD, whether through natural means or human-assisted reintroductions, may therefore be a key step in kelp forest restoration at ecologically significant scales.
Assuntos
Asteraceae , Helianthus , Kelp , Strongylocentrotus purpuratus , Animais , Humanos , Cadeia Alimentar , Estrelas-do-Mar , Comportamento Predatório , Florestas , Ouriços-do-Mar/fisiologia , EcossistemaRESUMO
For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions. Here, we use a machine learning approach to quantify the importance of environmental factors and apply it to generate spatial predictions of the species diversity of all trees (dbh ≥ 10 cm) and for very large trees (dbh ≥ 70 cm) using data from 243 forest plots (108,450 trees and 2832 species) distributed across different forest types and biogeographic regions of the Brazilian Amazon. The diversity of large trees and of all trees was significantly associated with three environmental factors, but in contrasting ways across regions and forest types. Environmental variables associated with disturbances, for example, the lightning flash rate and wind speed, as well as the fraction of photosynthetically active radiation, tend to govern the diversity of large trees. Upland rainforests in the Guiana Shield and Roraima regions had a high diversity of large trees. By contrast, variables associated with resources tend to govern tree diversity in general. Places such as the province of Imeri and the northern portion of the province of Madeira stand out for their high diversity of species in general. Climatic and topographic stability and functional adaptation mechanisms promote ideal conditions for species diversity. Finally, we mapped general patterns of tree species diversity in the Brazilian Amazon, which differ substantially depending on size class.
Assuntos
Aclimatação , Vento , Brasil , Floresta Úmida , BiodiversidadeRESUMO
In the California compliance cap-and-trade carbon market, improved forest management (IFM) projects generate carbon credits in the initial reporting period if their initial carbon stocks are greater than a baseline. This baseline is informed by a "common practice" stocking value, which represents the average carbon stocks of surveyed privately owned forests that are classified into the same general forest type by the California Air Resources Board. Recent work has called attention to the need for more ecologically informed common practice carbon stocking values for IFM projects, particularly those in areas with sharp ecological gradients. Current methods for estimating common practice produce biases in baseline carbon values that lead to a clustering of IFM projects in geographical areas and ecosystem types that in fact support much greater forest carbon stocks than reflected in the common practice. This phenomenon compromises additionality, or the increases in carbon sequestration or decreases in carbon emissions that would not have occurred in the absence of carbon crediting. This study seeks to expand upon recent work on this topic and establish unbiased common practice estimates along sharp ecological gradients using methods that do not rely upon discrete forest classification. We generated common practice values for credited IFM projects in the Southern Cascades using a principal components analysis on species composition over an extensive forest inventory to determine the ecological similarity between inventoried forests and IFM project sites. Our findings strengthen the results of recent research suggesting common practice bias and adverse selection. At several sites, even after controlling for private ownership, 100% of the initial carbon stocks could be explained by ecological variables. This result means that improved management did not preserve or increase carbon stocks above what was typical, suggesting that no carbon offsets should have been issued for these sites. This result reveals greater bias than that been found at project sites in this region by research that has used discrete forest categorization.
Assuntos
Ecossistema , Florestas , Sequestro de Carbono , Propriedade , Inquéritos e QuestionáriosRESUMO
Forest ecology traditionally focuses on plant growth and survival, leaving seed production as a major demographic process lacking a framework for how it will be affected by global change. Understanding plant reproductive responses to changing climate is complicated by masting, the annually variable seed production synchronized within populations. Predicting trends in masting is crucial, because masting impacts seed predation and pollination enough to override simple trends in mean seed production. Proximate mechanisms of seed production patterns in perennial plants are gathered to identify processes through which masting may be affected by a changing environment. Predicting trends in masting will require understanding the mechanisms that cause predictable seed failure after high-seed years, and the stochastic mechanisms that synchronize individuals in high-seed years.
Assuntos
Ecologia , Polinização , Animais , Comportamento Predatório , Reprodução , Sementes/fisiologia , ÁrvoresRESUMO
Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
Assuntos
Florestas , Árvores , Biomassa , Carbono/metabolismo , Ciclo do Carbono , Ecossistema , Árvores/fisiologiaRESUMO
Droughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018-2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13 C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13 C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
Assuntos
Secas , Ecossistema , Isótopos de Carbono , Mudança Climática , FlorestasRESUMO
A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems. Furthermore, tree growth sensitivity to climate is likely to vary widely among species, and the ecological strategies underlying these differences remain poorly understood. Here, we utilize an exceptional dataset of 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how multiannual tree growth responds to both climate means and anomalies, and how species' functional traits mediate these growth responses to climate. We show that anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both climate means and anomalies. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests and that species traits can provide insights into understanding these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.
Assuntos
Árvores , Clima Tropical , Mudança Climática , Florestas , Folhas de PlantaRESUMO
BACKGROUND AND AIMS: Mammals and molluscs (MaM) are abundant herbivores of tree seeds and seedlings, but how the trees and their environment affect MaM herbivory has been little studied. MaM tend to move much larger distances during the feeding stage than the more frequently studied insect herbivores. We hypothesize that MaM (1) select and stay within the patches that promise to be relatively the richest in seeds and seedlings, i.e. patches around adult trees that are old and within a distantly related, less productive neighborhood; and (2) try to remain sheltered from predators while foraging, i.e. mammals remain close to adult trees or to cover by herbs while foraging, and might force their mollusc prey to show the opposite distribution. METHODS: We exposed oak acorns and seedlings in a temperate forest along transects from adult conspecifics in different neighbourhoods. We followed acorn removal and leaf herbivory. We used exclusion experiments to separate acorn removal by ungulates vs. rodents and leaf herbivory by insects vs. molluscs. We measured the size of the closest conspecific adult tree, its phylogenetic isolation from the neighbourhood and the herbaceous ground cover. KEY RESULTS: Consistent with our hypothesis, rodents removed seeds around adult trees surrounded by phylogenetically distant trees and by a dense herb cover. Molluscs grazed seedlings surrounding large conspecific adults and where herb cover is scarce. Contrary to our hypothesis, the impact of MaM did not change from 1 to 5 m distance from adult trees. CONCLUSIONS: We suggest that foraging decisions of MaM repulse seedlings from old adults, and mediate the negative effects of herbaceous vegetation on tree recruitment. Also, an increase in mammalian seed predation might prevent trees from establishing in the niches of phylogenetically distantly related species, contrary to what is known from insect enemies.
Assuntos
Quercus , Plântula , Animais , Mamíferos , Moluscos , Filogenia , SementesRESUMO
Forests are projected to undergo dramatic compositional and structural shifts prompted by global changes, such as climatic changes and intensifying natural disturbance regimes. Future uncertainty makes planning for forest management exceptionally difficult, demanding novel approaches to maintain or improve the ability of forest ecosystems to respond and rapidly reorganize after disturbance events. Adopting a landscape perspective in forest management is particularly important in fragmented forest landscapes where both diversity and connectivity play key roles in determining resilience to global change. In this context, network analysis and functional traits combined with ecological dynamic modeling can help evaluate changes in functional response diversity and connectivity within and among forest stands in fragmented landscapes. Here, we coupled ecological dynamic modeling with functional traits analysis and network theory to analyze forested landscapes as an interconnected network of forest patches. We simulated future forest landscape dynamics in a large landscape in southern Quebec, Canada, under a combination of climate, disturbance, and management scenarios. We depicted the landscape as a functional network, assessed changes in future resilience using indicators at multiple spatial scales, and evaluated if current management practices are suitable for maintaining resilience to simulated changes in regimes. Our results show that climate change would promote forest productivity and favor heat-adapted deciduous species. Changes in natural disturbances will likely have negative impacts on native conifers and will drive changes in forest type composition. Climate change negatively impacted all resilience indicators and triggered losses of functional response diversity and connectivity across the landscape with undesirable consequences on the capacity of these forests to adapt to global change. Also, current management strategies failed to promote resilience at different spatial levels, highlighting the need for a more active and thoughtful approach to forest management under global change. Our study demonstrates the usefulness of combining dynamic landscape-scale simulation modeling with network analyses to evaluate the possible impacts of climate change as well as human and natural disturbances on forest resilience under global change.
Assuntos
Ecossistema , Florestas , Canadá , Mudança Climática , Humanos , QuebequeRESUMO
AIMS: The soil microbial community plays a critical role in increasing phosphorus (P) availability in low-P, weathered soils by "mining" recalcitrant organic P through the production of phosphatase enzymes. However, there is a lack of data on the fungal and bacterial taxa which are directly involved in P mining, which could also serve as potential microbial bioindicators of low P availability. METHODS AND RESULTS: Leveraging a 5-year P enrichment experiment on low-P forest soils, high-throughput sequencing was used to profile the microbial community to determine which taxa associate closely with P availability. We hypothesized that there would be a specialized group of soil micro-organisms that could access recalcitrant P and whose presence could serve as a bioindicator of P mining. Community profiling revealed several candidate bioindicators of P mining (Russulales, Acidobacteria Subgroup 2, Acidobacteriales, Obscuribacterales and Solibacterales), whose relative abundance declined with elevated P and had a significant, positive association with phosphatase production. In addition, we identified candidate bioindicators of high P availability (Mytilinidales, Sebacinales, Chitinophagales, Cytophagales, Saccharimonadales, Opitulales and Gemmatales). CONCLUSIONS: This research provides evidence that mitigating P limitation in this ecosystem may be a specialized trait and is mediated by a few microbial taxa. SIGNIFICANCE AND IMPACT OF THE STUDY: Here, we characterize Orders of soil microbes associated with manipulated phosphorus availability in forest soils to determine bioindicator candidates for phosphorus. Likewise, we provide evidence that the microbial trait to utilize recalcitrant organic forms of P (e.g. P mining) is likely a specialized trait and not common to all members of the soil microbial community. This work further elucidates the role that a complex microbial community plays in the cycling of P in low-P soils, and provides evidence for future studies on microbial linkages to human-induced ecosystem changes.
Assuntos
Biomarcadores Ambientais , Florestas , Microbiota , Fósforo/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Humanos , Microbiota/genética , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/análise , Solo/químicaRESUMO
Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10-19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.
Assuntos
Mudança Climática , Rios , Sementes/fisiologia , Neve , Clima , Geografia , Modelos Lineares , Modelos Biológicos , Populus/fisiologia , Salix/fisiologia , Estações do Ano , Temperatura , Fatores de TempoRESUMO
Invasive terrestrial isopods are likely to have altered leaf litter decomposition processes in North American forests, but the mechanisms underlying these alterations and the degree to which they differ among isopod species are poorly characterized. Using mixed-deciduous leaf litter microcosms, we quantified the effects of two common, invasive isopods (Oniscus asellus and Porcellio scaber) on short-term leaf litter decomposition and microbial community structure and function. Microcosms containing ground litter and a microbial inoculant were exposed to one of the two isopod species or no isopods for 21 days. Mass loss was then quantified as the change in litter dry mass after leaching, and microbial respiration was quantified as the mass of CO2 absorbed by soda lime. Litter leachates were plated on agar to quantify culturable bacterial and fungal abundance, and denaturing gradient gel electrophoresis of amplified leachate microbial DNA was used to characterize shifts in microbial community structure. Isopod presence increased litter mass loss by a modest ~ 6%, but did not affect litter microbial respiration. Bacterial abundance increased significantly in the presence of isopods, while fungal abundance was either unchanged or reduced. Overall litter microbial species richness was reduced by isopods, with O. asellus specifically reducing fungal abundance and diversity. Isopods modified the microbial community structure by suppressing four bacterial and one fungal species, while promoting growth of four other bacterial species (two unique to each isopod species) and two fungal species (one which was unique to O. asellus).
Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Herbivoria , Isópodes/fisiologia , Microbiota , Folhas de Planta/microbiologia , Microbiologia do Solo , Animais , Cadeia Alimentar , Espécies Introduzidas , OntárioRESUMO
Ecosystems with ectomycorrhizal plants have high soil carbon : nitrogen ratios, but it is not clear why. The Gadgil effect, where competition between ectomycorrhizal and saprotrophic fungi for nitrogen slows litter decomposition, may increase soil carbon. However, experimental evidence for the Gadgil effect is equivocal. Here, we apply resource-ratio theory to assess whether interguild fungal competition for different forms of organic nitrogen can affect litter decomposition. We focus on variation in resource input ratios and fungal resource use traits, and evaluate our model's predictions by synthesizing prior experimental literature examining ectomycorrhizal effects on litter decomposition. In our model, resource input ratios determined whether ectomycorrhizal fungi suppressed saprotrophic fungi. Recalcitrant litter inputs favored the former over the latter, allowing the Gadgil effect only when such inputs predominated. Although ectomycorrhizal fungi did not always hamper litter decomposition, ectomycorrhizal nitrogen uptake always increased carbon : nitrogen ratios in litter. Our meta-analysis of empirical studies supports our theoretical results: ectomycorrhizal fungi appear to slow decomposition of leaf litter only in forests where litter inputs are highly recalcitrant. We thus find that the specific contribution of the Gadgil effect to high soil carbon : nitrogen ratios in ectomycorrhizal ecosystems may be smaller than predicted previously.